• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Building an academic foundation for balancing ultra-high-speed deposition and ultra-low friction of hard carbon-based coatings

Research Project

  • PDF
Project/Area Number 16H04256
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Design engineering/Machine functional elements/Tribology
Research InstitutionGifu University

Principal Investigator

Kousaka Hiroyuki  岐阜大学, 工学部, 教授 (90362318)

Co-Investigator(Kenkyū-buntansha) 太田 貴之  名城大学, 理工学部, 教授 (10379612)
小田 昭紀  千葉工業大学, 工学部, 教授 (70335090)
村島 基之  名古屋大学, 工学研究科, 助教 (70779389)
Project Period (FY) 2016-04-01 – 2019-03-31
Keywords超高速成膜 / シリコン含有ダイヤモンドライクカーボン / 低摩擦 / トライボロジー / プラズマCVD / スパッタリング / プラズマシミュレーション / 表面分析
Outline of Final Research Achievements

Friction behavior of the sliding between steel ball and a-C:H:Si films, which were deposited at ultra-high-speed larger than 100 mirometer/h, was clarified. Friction tests were conducted in ambient air with relative humidities from 10 to 50 %. Friction coefficient of the a-C:H:Si films after running-in showed 0.05 to 0.12, which increased with increasing RH. For comparison, an a-C:H film was deposited with DC plasma CVD, and its friction coefficient after running-in showed 0.2 to 0.5, which also increased with increasing RH. In all the humidity range employed, friction of the a-C:H:Si was less than that of the a-C:H; in addition, dependence of friction coefficient on humidity of the a-C:H:Si was smaller than that of the a-C:H.
It should be noted that the influence of as-deposit film structure on the expression of low-friction and the structure of sliding interface were also clarified by detailed surface analysis using XPS, RBS-ERDA, and Raman spectroscopy.

Free Research Field

トライボロジー

Academic Significance and Societal Importance of the Research Achievements

100μm/h以上の超高速で成膜されたa-C:H:Si膜が,従来の方法で合成されたa-C:H:Si膜と同様に低摩擦を発現することがはじめて確認された.100μm/h以上の超高速成膜を必要とする新しい小ロットDLC成膜技術の確立に向けて,重要な基盤的成果となった.また,その低摩擦発現機構を解明する過程で,a-C:H:Si膜の大気開放無潤滑下での低摩擦発現に関する新しい学術的知見が得られた.それらは,炭素系硬質膜の低摩擦発現に関する体系的な知識の一部をなすものであり,炭素系硬質膜を利用した摺動要素の設計に生かされる.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi