2019 Fiscal Year Final Research Report
Numerical simulations of turbulent collisions of spherical and non-spherical large particles
Project/Area Number |
16H04271
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Fluid engineering
|
Research Institution | Japan Agency for Marine-Earth Science and Technology |
Principal Investigator |
ONISHI Ryo 国立研究開発法人海洋研究開発機構, 付加価値情報創生部門(地球情報基盤センター), グループリーダー (30414361)
|
Co-Investigator(Kenkyū-buntansha) |
Kolomensk Dmitry 国立研究開発法人海洋研究開発機構, 付加価値情報創生部門(地球情報基盤センター), 特任研究員 (00813924)
竹内 伸太郎 大阪大学, 工学研究科, 准教授 (50372628)
松田 景吾 国立研究開発法人海洋研究開発機構, 地球情報基盤センター, 研究員 (50633880)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Keywords | 混相流 / 粒子解像計算 / 粒子衝突 / 乱流 |
Outline of Final Research Achievements |
In order for contributing to improve the prediction of frequent localized heavy rainfall, we aim to construct a rapid growth model of rainfall and snow particles (spherical and non-spherical large particles) considering the effects of turbulence in clouds. Focusing on the collision growth process, we have established a large-scale parallel numerical simulation method that calculates collision statistics while resolving particles moving in turbulence and the flow around them. We have obtained detailed collision statistics under various conditions, on which the turbulent collision model of spherical and non-spherical large particles will be based. Furthermore, we have developed a reliable lubrication model that can estimate the lubrication layer force with finite grids. This model can contribute to develop a reliable collision model for rainfall and snow particles that can consider the effects of turbulence.
|
Free Research Field |
環境流体工学
|
Academic Significance and Societal Importance of the Research Achievements |
乱流の影響を考慮できる降雨・降雪粒子の衝突因子モデルの開発に資する知見を得たことにより、頻発する局所集中豪雨の予測を高精度化に貢献した。また、本研究は混相乱流現象という工学が得意とする分野と、雲という気象分野とが密接に関係する分野横断的研究である点も大きな特色と言え、豪雨予測精度向上という安心・安全な社会の構築への貢献を見据えた基礎研究である。さらに付け加えれば、気象分野だけでなく、宇宙物理分野では微惑星形成過程(ダスト併合過程)の解明、また、噴霧燃焼や微粉炭燃焼の最適設計などの別分野への応用も期待される。
|