• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Innovative Optical Isolators based on Surface Plasmon Polariton using Ferromagnetic Metals

Research Project

  • PDF
Project/Area Number 16H04346
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Electron device/Electronic equipment
Research InstitutionTokyo University of Agriculture and Technology

Principal Investigator

Shimizu Hiromasa  東京農工大学, 大学院工学研究院, 准教授 (50345170)

Co-Investigator(Kenkyū-buntansha) Zayets Vadym  国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 主任研究員 (10357080)
Project Period (FY) 2016-04-01 – 2019-03-31
Keywords強磁性金属 / 磁気光学効果 / 表面プラズモンポラリトン / 光集積回路 / 光アイソレータ
Outline of Final Research Achievements

We have studied integration of a plasmonic isolator on a Si substrate. The key characteristics of the plasmonic isolator have been developed. A method to enhance the magneto-optical figure of merit (FOM) and reduce the propagation loss of a surface plasmon in order to realize the proposed design of the plasmonic isolator is described. One hundred % enhancement of the FOM and 20× reduction of propagation loss in the optimized ferromagnetic plasmonic structures (Al2O3/SiO2/Fe), are demonstrated.
Furthermore, a new fabrication technology for integration of a plasmonic waveguide and a Si nanowire waveguide without lift-off technique, has been developed. Main merit of this technology is a low coupling loss between Si nanowire waveguide and the plasmonic waveguide. The new fabrication technology was optimized in order to reduce the optical loss. A low propagation loss of 0.9 dB for a Si nanowire waveguide coupled to a Co/TiO2/Si plasmonic waveguide of bridge type was demonstrated.

Free Research Field

光エレクトロニクス

Academic Significance and Societal Importance of the Research Achievements

光アイソレータは半導体レーザへの反射戻り光を防ぎ、レーザの安定動作を実現するために必須の光デバイスである。これまで、光変調器、光合分波器等様々な光素子が半導体レーザと集積化されてきた。光アイソレータを実現するためには、強磁性金属がもたらす非相反効果が必須であり、強磁性金属を使った本研究のアプローチ、磁性ガーネットを使ったアプローチ等が取られてきた。一つの課題は半導体レーザと同等のサイズで実現し集積できるかどうかであり、本研究では、表面プラズモンポラリトンによって光を強磁性金属近くに伝搬させ、かつ伝搬損失を回避する手法を提案し、実証した。上記課題解決に資するものである。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi