2019 Fiscal Year Final Research Report
Four-dimensional analyses for understanding the position and conduction pathway of ions in the battery under the charge/discharge practical operation by neutron diffraction
Project/Area Number |
16H04491
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Physical properties of metals/Metal-base materials
|
Research Institution | Kyoto University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
小野寺 陽平 京都大学, 複合原子力科学研究所, 助教 (20531031)
森 一広 京都大学, 複合原子力科学研究所, 准教授 (40362412)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Keywords | 中性子散乱 / 構造解析 / 蓄電池材料 / X線回折 / 伝導特性 / 固体電解質 / イオン伝導経路 / イオン伝導体 |
Outline of Final Research Achievements |
The realization of all-solid-state batteries is critical for large-scale applications. In this work, we used a cutting-edge neutron diffractometer and analysis programs of the Rietveld and maximum entropy methods to determine ions diffusion pathways in the crystalline solid electrolyte. For the glassy solid electrolyte, the three-dimensional atomic configurations and conduction pathways of ions were clarified by reverse Monte Carlo modeling and bond valence sum imaging programs. Especially, we focused to determine the F ions diffusion pathways in the superior solid electrolyte Ba0.6La0.4F2.4. We showed that the excessive F ions, located at the specific interstitial sites, migrate to the neighboring F ion sites based on the interstitialcy diffusion mechanism at the operating temperature for all-solid-state fluoride shuttle batteries(FSBs). Understanding the diffusion mechanism of F ions plays a key role in the development of solid electrolytes for FSBs.
|
Free Research Field |
材料物性
|
Academic Significance and Societal Importance of the Research Achievements |
全固体蓄電池(LIBやFSB)の電池性能をフルに引き出すためには、固体内での伝導イオンの高速移動のみならず、固-固界面で伝導イオン(LiイオンやFイオンなど)の授受が円滑に行われることが重要である。それにもかかわらず、電池を構成する物質の充放電中の構造変化の解析ならびに伝導イオンの移動経路の原子レベルの解明は非常に遅れている。それ故、伝導イオン移動経路の視覚化は学術的に意義の高い研究であると言える。同時に、電池性能を向上させるための要因を原子レベルで解明することは、次世代全固体電池開発の指針を与えることとなり、社会的意義も非常に高い。
|