• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Development of mineral insulated high field superconducting magnet for next generation particle physics experiment

Research Project

  • PDF
Project/Area Number 16H06008
Research Category

Grant-in-Aid for Young Scientists (A)

Allocation TypeSingle-year Grants
Research Field Particle/Nuclear/Cosmic ray/Astro physics
Research InstitutionHigh Energy Accelerator Research Organization

Principal Investigator

Iio Masami  大学共同利用機関法人高エネルギー加速器研究機構, 超伝導低温工学センター, 研究機関講師 (00469892)

Research Collaborator OGITSU Toru  高エネルギー加速器研究機構
NAKAMOTO Tatsushi  高エネルギー加速器研究機構
YOSHIDA Makoto  高エネルギー加速器研究機構
SUGANO Michinaka  高エネルギー加速器研究機構
SUZUKI Kento  高エネルギー加速器研究機構
YANG Ye  九州大学
Project Period (FY) 2016-04-01 – 2019-03-31
Keywords超電導工学 / 加速器 / 素粒子
Outline of Final Research Achievements

Next-generation particle physics experiments require 20 T class magnets operated in high radiation environments exceeding 100 MGy. However, existing superconducting magnet technology cannot reach it. The purpose of this research is to challenge the development of new superconducting magnet technology through the basic development research of mineral insulation using REBCO wire which is a high temperature superconductor. We succeeded in forming about 0.025 mm thick ceramic film on REBCO surface by applying ceramic coating technology. It has a withstand voltage of more than 2 kV, and no degradation of the superconducting performance is confirmed by measurement of critical current. In addition, a radiation resistant pulse-tube cryocooler made on a trial basis, and the cooling test has confirmed the expected cooling capacity. From the above, the prospect of realizing a mineral insulated superconducting magnet based on REBCO has been established.

Free Research Field

超伝導工学 素粒子実験

Academic Significance and Societal Importance of the Research Achievements

電気絶縁の技術は磁石製作において非常に重要であり、現在の超電導磁石はエポキシ等用いた有機材料により絶縁処理されている。しかし、有機材料は、高分子鎖の間の架橋と分子鎖の切断、および二重結合等の不飽和結合の増大による機械強度の劣化が10 MGyより顕著になる。本研究ではセラミックコーティングにより無機的な電気絶縁の実現性を示した。これにより放射線に強い超電導磁石の実現の可能が出てきた。また、高温超伝導体のREBCOを使うことで、現行のNbTi磁石よりも高磁場を得ることができるだけでなく、超電導状態を維持できる温度が飛躍的に向上するため、放射線による発熱に対しても高い温度マージンを確保できる。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi