2019 Fiscal Year Final Research Report
Creation of Practical CAE System Predicting Mechanical Properties of Advanced Materials on the Basis of Microstructures
Project/Area Number |
16H06059
|
Research Category |
Grant-in-Aid for Young Scientists (A)
|
Allocation Type | Single-year Grants |
Research Field |
Materials/Mechanics of materials
|
Research Institution | Tohoku University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | 繊維強化熱可塑樹脂 / 超微細粒金属材料 / CAE / マルチスケールメカニクス / 降伏関数 |
Outline of Final Research Achievements |
A CAE system was established to reproduce the deformation behavior of advanced materials, such as fiber-reinforced thermoplastics and ultrafine-grained metal materials. Such advanced materials will be rapidly used as structural materials in the future. We numerically predicted the yield function used in CAE for structural analysis based on the experimental multiscale mechanics. The deformation behavior of advanced materials was described based on information on the microstructure obtained from experimental observations. The estimation system for contours of constant plastic work was improved by comparing the analysis results with the experimental results of microstructural observations and biaxial tensile tests. By installing the yield function into general-purpose structural analysis software, it is possible to seamlessly connect a series of processes from material design to development and practical use using CAE.
|
Free Research Field |
計算塑性力学
|
Academic Significance and Societal Importance of the Research Achievements |
微視的な変形の素過程に基づいてFRTPやUFGMといった最先端材料の等塑性仕事面を数値解析的に予測し,材料微細組織に基づく大変形問題を解くマルチスケールメカニクスを構築する点に本研究の学術的特色がある.実験的知見をマルチスケールモデリングの体系に強固に組み込んだ実験マルチスケールメカニクスの構築に取り組み,超微細粒FCC材料の降伏点降下現象や焼鈍処理による硬化といった従来の塑性論では表現することのできない現象を初めて表現することができた.このような微視組織は,成形条件や加工処理によって決定されるため,最終的には組織観察のみに基づく,詳細な力学解析も実験も不要な新材料創製支援ツールが開発できる.
|