2020 Fiscal Year Final Research Report
Exploration of breakthrough in terahertz-device performance by understanding the radiation mechanism from view point of electron travelling and transition
Project/Area Number |
16H06292
|
Research Category |
Grant-in-Aid for Specially Promoted Research
|
Allocation Type | Single-year Grants |
Review Section |
Science and Engineering
Engineering
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
Asada Masahiro 東京工業大学, 科学技術創成研究院, 教授 (30167887)
|
Co-Investigator(Kenkyū-buntansha) |
宮本 恭幸 東京工業大学, 工学院, 教授 (40209953)
鈴木 左文 東京工業大学, 工学院, 准教授 (40550471)
西山 伸彦 東京工業大学, 工学院, 教授 (80447531)
|
Project Period (FY) |
2016-04-26 – 2021-03-31
|
Keywords | 半導体ナノデバイス / 共鳴トンネルダイオード / テラヘルツ発振 / 周波数可変テラヘルツ光源 / テラヘルツ無線通信 / テラヘルツイメージング / テラヘルツレーダー / テラヘルツ分光分析 |
Outline of Final Research Achievements |
This study was done aiming at elucidation of device operation, achievement of high performance, and the development and expansion of applications, for semiconductor light sources in the terahertz frequency band using resonant tunneling diode oscillators, and many results were obtained. In the elucidation of the device operation, a theory for the response to terahertz waves was constructed. In the high-performance operation, 1.98 THz oscillation was achieved, which is the highest frequency of room-temperature electronic single oscillators to date, and a new structure capable of oscillating up to 2.8 THz was proposed. Oscillation with high output power of 0.7 mW at 1 THz by array configuration, frequency-variable oscillators, and oscillation with 1 Hz line width were also achieved. In the application, basic operation was demonstrated for spectroscopy, high-capacity communication, radar, and three-dimensional imaging
|
Free Research Field |
工学
|
Academic Significance and Societal Importance of the Research Achievements |
周波数がサブTHz~数THzのテラヘルツ帯は満足な光源がないために開拓が遅れていた。 本研究は、半導体テラヘルツ光源の物理解明、高性能化、応用展開を行ったもので、学術的意義は、電子の走行と遷移を考慮してテラヘルツ帯光源デバイスの周波数応答を理論的に明らかにしたこと、および、室温で動作する半導体テラヘルツ光源の高性能化・高機能化を達成したこと、また、社会的意義は、このような超小型光源の応用展開により、イメージングや物質分析、セキュリティ、大容量通信など、テラヘルツ帯の様々な応用の発展に寄与したことである。
|