2020 Fiscal Year Final Research Report
Development of single atom spectroscopy
Project/Area Number |
16H06333
|
Research Category |
Grant-in-Aid for Scientific Research (S)
|
Allocation Type | Single-year Grants |
Research Field |
Thin film/Surface and interfacial physical properties
|
Research Institution | Osaka University (2020) National Institute of Advanced Industrial Science and Technology (2016-2019) |
Principal Investigator |
Suenaga Kazu 大阪大学, 産業科学研究所, 教授 (00357253)
|
Co-Investigator(Kenkyū-buntansha) |
千賀 亮典 国立研究開発法人産業技術総合研究所, 材料・化学領域, 主任研究員 (80713221)
Lin YungChang 国立研究開発法人産業技術総合研究所, 材料・化学領域, 主任研究員 (90772244)
|
Project Period (FY) |
2016-05-31 – 2021-03-31
|
Keywords | 電子線分光 |
Outline of Final Research Achievements |
This work aimed to develop the single atom spectroscopy techniques based on electron microscopy and spectroscopy. So we have pushed the possibilities of electron spectroscopy to its limit by using the state-of-the-art electron optics and related technologies. High performance CMOS detector has been installed and the single atom spectroscopy for the light element (Li Z=3) and noble metal (Ru Z=44) have been made possible for the first time. Also the high speed shutter-time for the new detector enables us to record the single atom spectra at the speed 5 times faster. This will allow us to track the single atom electron state during a phase transition or chemical reaction in future. Also the energy resolution of electron spectroscopy was improved by introducing the monochromator and now the spectroscopy in the optical range becomes possible at a sub nanometer resolution. These results have been published in many international journals including 3 Nature and 1 Science.
|
Free Research Field |
固体物理学
|
Academic Significance and Societal Importance of the Research Achievements |
物質の根源に思いをはせた古代ギリシア人以来、モノや生命を構成する最小単位をひとつひとつ可視化しカウントすることは何世紀もの間、科学者の夢であった。古代原子論を提唱したデモクリトスも近代原子論の祖ダルトンも、原子の動きが人間の目に捉えられ、かつひとつひとつ区別されるような時代が訪れるとは考えてもいなかったであろう。本研究では、(素粒子をのぞけば)物質の最小単位である原子ひとつひとつの追跡や分析を実現するための研究を発展させてきた。単原子の電子状態およびそれらの変化の実時間観測を可能にし、物性研究および生命研究の基礎的発展に大きく貢献できる基盤技術開発にとって重要な研究である。
|