• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Novel Energy and Information Conversions, Created by Solid-State Electrochemical Processes

Research Project

  • PDF
Project/Area Number 16H06353
Research Category

Grant-in-Aid for Scientific Research (S)

Allocation TypeSingle-year Grants
Research Field Functional solid state chemistry
Research InstitutionNagoya University

Principal Investigator

AWAGA Kunio  名古屋大学, 理学研究科, 教授 (10202772)

Co-Investigator(Kenkyū-buntansha) 原田 潤  北海道大学, 理学研究院, 准教授 (00313172)
吉川 浩史  関西学院大学, 理工学部, 准教授 (60397453)
横川 大輔  東京大学, 大学院総合文化研究科, 准教授 (90624239)
Irle Stephan  名古屋大学, 理学研究科(WPI), 教授 (00432336)
Project Period (FY) 2016-05-31 – 2021-03-31
Keywords電子物性 / 固体電気化学 / 有機エレクトロニクス / 電気2重層
Outline of Final Research Achievements

We have synthesized molecular nanoporous materials with unique topologies such as honeycomb and gyroid, and explored their physical properties, aiming interdisciplinary research between molecular science and solid-state electrochemistry. We realized excellent electric power storages, by using these materials as cathode active materials for rechargeable batteries, and by inserting redox-active materials and/or organic conductive polymers into their cavity spaces. Furthermore, we fabricated organic devices which contained a solid-liquid interfacial electric double layer and achieved excellent transistor characteristics and high efficiency photoelectric conversion. We also developed various operando measurements in solid-state electrochemistry and proposed a potential junction model that continuously links the work function of the metal to the chemical potential of the electrolyte.

Free Research Field

物性化学

Academic Significance and Societal Importance of the Research Achievements

持続可能な社会の発展に向け、ユビキタスな物質や手法による新しいエネルギー変換や情報変換の実現は危急の課題である。本研究では、金属-有機構造体(MOF)や共有結合構造体(COF)などのナノポーラス分子性物質が、2次電池の正極活物質やキャパシタ電極として十分に活用できることを実証することができた。さらに、固液界面の電気2重層を有機トランジスタや光電セルに導入することによって、その基礎理論を発展させるとともに、分子性物質に相応しい作動原理を提唱することができた。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi