• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Annual Research Report

Minimal model program and singularity theory

Research Project

Project/Area Number 16H06710
Research InstitutionThe University of Tokyo

Principal Investigator

中村 勇哉  東京大学, 大学院数理科学研究科, 助教 (20780034)

Project Period (FY) 2016-08-26 – 2018-03-31
Keywords有理点問題 / 極小モデル理論 / ACC予想
Outline of Annual Research Achievements

本年度は、極小モデル理論と有理点の関係とACC予想について研究を進めた。以下、研究成果を詳述する。
有限体上定義された非特異ファノ多様体は有理点をもつというEsnault氏の結果がある。これに関して共同研究として、特異点を持つ場合の拡張を考察した。この結果、3次元の場合であるものの特異点を持つ場合に(KLTファノ型多様体)についてEsnault氏が証明したのと同じ公式を証明することができた。またこの研究の続きとして、共同研究により、KLTよりさらに特異点の悪いファノ多様体を研究し一定の成果を得ることができた。極小モデル理論と有理点との関係を理解することができた点が重要であると思われる。
ACC予想に関連して、極小ログ食い違い係数を与えるようなブローアップの列の長さに関して予想を立てた。 これに関し共同研究を行い、低次元の場合とトーリック多様体の場合においての証明を与えることができた。これらを論文としてまとめ、プレプリントとして発表した。
また、標数0のフリップの停止問題については、近年Birkarによって証明されたBAB予想の観点から研究を進め、大域的な方向からのACC予想の理解が進んだ。BAB予想に関しては国内外多くの研究機関で研究集会が行われており、それらに参加し、情報を得ることができた。目標であったACC予想に直接の応用を見つけることはできなかったが、将来的に有用であろう考え方や手法を学ぶことができた。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

有理点問題について極小モデル理論との関係性を見出すことができたため。またACC予想に関連した予想について特別な場合に証明することができ、エヴィデンスを得られたため。

Strategy for Future Research Activity

KLTよりさらに特異点の悪いファノ多様体に関して有理点問題を最定式化することができた。これを証明するのが一つの目標となる。さらに、ACC予想に関して提示した予想を証明することが目標となる。

  • Research Products

    (5 results)

All 2017 2016

All Presentation (5 results) (of which Int'l Joint Research: 3 results,  Invited: 5 results)

  • [Presentation] Rational points on log Fano threefolds over a finite field2017

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Workshop on Higher Dimensional Algebraic Geometry, Holomorphic Dynamics and Their Interactions
    • Int'l Joint Research / Invited
  • [Presentation] New formulation of the number of rational points on singular Fano varieties over a finite field2017

    • Author(s)
      Yusuke Nakamura
    • Organizer
      The 2nd Higher dimensional algebraic geometry Echigo Yuzawa symposium
    • Invited
  • [Presentation] Rational points on log Fano threefolds over a finite field2017

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Cambridge--Tokyo Algebraic Geometry workshop 2017
    • Int'l Joint Research / Invited
  • [Presentation] Rational points on log Fano threefolds over a finite field2016

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Tokyo-Princeton algebraic geometry conference, Princeton University
    • Int'l Joint Research / Invited
  • [Presentation] Birkar's paper "Anti-pluricanonical systems on Fano varieties" explanation2016

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Summer School on Algebraic Geometry
    • Invited

URL: 

Published: 2018-12-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi