2018 Fiscal Year Final Research Report
Theoretical developments of sparse modeling and multivariate analysis techniques
Project/Area Number |
16K00057
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Statistical science
|
Research Institution | Chuo University |
Principal Investigator |
|
Research Collaborator |
SHIMIZU kunio
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | 線形・非線形スパースモデリング / 関数データ解析 / 部分空間法 / 多クラス識別・パターン認識 / 確率的次元圧縮 / カーネル非線形モデリング |
Outline of Final Research Achievements |
Huge amount of data with complex structure and/or high-dimensional data have been accumulating from diverse sources. Through this research we have investigated the problem of analyzing such datasets to extract useful information and pattern, and proposed various modeling and multivariate analysis techniques: (1) Multi-class classification methods for high-dimensional longitudinal data are proposed based on class-featuring information compression with the help of multivariate functional principal component. (2) Sparse kernel subspace methods are proposed to learn the complex structure of high-dimensional data. (3) Model selection criteria are provided for Bayesian probabilistic dimensionality reduction in principal component and canonical correlation analyses. (4) With the development of modeling techniques such as sparse and Bayes modeling, we investigate a general theory for constructing model selection criteria to evaluate models constructed by various estimation procedures.
|
Free Research Field |
統計科学
|
Academic Significance and Societal Importance of the Research Achievements |
諸科学,産業界や実社会で日々獲得,蓄積されつつあるデータの多様化と大規模・高次元化の流れの中で,新たなデータ解析技術と効率的な情報処理の必要性が認識されるようになった.本研究で取り組んだ回帰モデリング,識別・判別,パターン認識,分類・クラスタリングなどの多変量解析手法の研究成果は,現象の情報源であるデータを分析,処理し,現象の解明と予測・制御,新たな知識発見や複雑なシステムの理解を促進するツールとして役立つと考えられる.また,大規模データの高速処理を可能とする高度なアルゴリズムの開発研究と相俟って,柔軟で汎化能力の優れた機械学習の新たな解析法として寄与することが期待される.
|