2018 Fiscal Year Final Research Report
Factored Representation of Local Feature Set for Affine Invariant Matching
Project/Area Number |
16K00253
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Perceptual information processing
|
Research Institution | Chubu University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
上瀧 剛 熊本大学, 大学院先端科学研究部(工), 准教授 (20582935)
|
Research Collaborator |
AMBAI Mitsuru
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | キーポイントマッチング / 特徴記述 / 多視点記述子 |
Outline of Final Research Achievements |
Conventional multi-viewpoint descriptors, such as Affine SIFT (ASIFT), require much online affine-warping of a patch image to precisely match images that have viewpoint changes. Therefore, we propose affine invariant descriptor without conventional heavy online affine-warping. To this end, the proposed descriptor represents traditional local descriptors as the inner product between “feature-description filters” and a local patch image. By using feature-description filters, we can conduct affine-warping efficiently using pre-computed filter sets. In addition, affine-warped filters can be compactly represented using a factorization method, and the multi-viewpoint local features can be generated for arbitrary continuous affine parameters. Experimental results indicate that the proposed descriptor describes multi-viewpoint features more efficiently than conventional affine invariant descriptors while maintaining the keypoint matching performance.
|
Free Research Field |
画像認識
|
Academic Significance and Societal Importance of the Research Achievements |
撮影位置を不連続にして撮影した画像には,視点変化によって生じる変化が含まれる.このような画像をつなぎ合わせるには,視点変化に影響を受けない特徴量記述が必要となる.本研究成果はこの問題を解決するアプローチであり,従来法より大幅な高速化を実現したことで,携帯型デバイスにおいての実行が可能となる.これにより,画像認識技術を用いた様々なアプリケーションの開発に貢献できる.
|