• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Factored Representation of Local Feature Set for Affine Invariant Matching

Research Project

  • PDF
Project/Area Number 16K00253
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Perceptual information processing
Research InstitutionChubu University

Principal Investigator

FUJIYOSHI Hironobu  中部大学, 工学部, 教授 (20333172)

Co-Investigator(Kenkyū-buntansha) 上瀧 剛  熊本大学, 大学院先端科学研究部(工), 准教授 (20582935)
Research Collaborator AMBAI Mitsuru  
Project Period (FY) 2016-04-01 – 2019-03-31
Keywordsキーポイントマッチング / 特徴記述 / 多視点記述子
Outline of Final Research Achievements

Conventional multi-viewpoint descriptors, such as Affine SIFT (ASIFT), require much online affine-warping of a patch image to precisely match images that have viewpoint changes. Therefore, we propose affine invariant descriptor without conventional heavy online affine-warping. To this end, the proposed descriptor represents traditional local descriptors as the inner product between “feature-description filters” and a local patch image. By using feature-description filters, we can conduct affine-warping efficiently using pre-computed filter sets. In addition, affine-warped filters can be compactly represented using a factorization method, and the multi-viewpoint local features can be generated for arbitrary continuous affine parameters. Experimental results indicate that the proposed descriptor describes multi-viewpoint features more efficiently than conventional affine invariant descriptors while maintaining the keypoint matching performance.

Free Research Field

画像認識

Academic Significance and Societal Importance of the Research Achievements

撮影位置を不連続にして撮影した画像には,視点変化によって生じる変化が含まれる.このような画像をつなぎ合わせるには,視点変化に影響を受けない特徴量記述が必要となる.本研究成果はこの問題を解決するアプローチであり,従来法より大幅な高速化を実現したことで,携帯型デバイスにおいての実行が可能となる.これにより,画像認識技術を用いた様々なアプリケーションの開発に貢献できる.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi