2017 Fiscal Year Research-status Report
多数の参加者の選好を考慮する多目的最適化と協調問題解決および制度設計手法の融合
Project/Area Number |
16K00301
|
Research Institution | Nagoya Institute of Technology |
Principal Investigator |
松井 俊浩 名古屋工業大学, 工学(系)研究科(研究院), 准教授 (60437093)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | マルチエージェントシステム / 協調問題解決 / 多目的最適化 / 公平性 / 学習 |
Outline of Annual Research Achievements |
本研究課題では,コラボレーション支援,電力スマートグリッド,交通や物流の制御,医療施設への搬送計画などで想定される資源割り当てにおいて重要な,多数の参加者の選好の調整を考慮する協調問題解決と制度設計に注目し,それらを融合した問題とその解法について検討している. 本年度は,多目的最適化における公平性を考慮するスカラ化の指標を経路最適化問題に導入する手法を検討した.従来の経路最適化では,最短経路を求めることが基本的であるが,その一方で,実際的な場面では,配送等の車両が通過する近隣住民の不満や,経路上の設備の余命の程度など,コストやリスクが極端に高い特定の個所を避けつつ,全体のコストを平準化することが望まれる場合が考えられる.そこで,部分経路コストの最悪値と全体のコストの不平等さを改善する指標であり,かつ動的計画法に分解可能な指標を従来型の経路最適化手法に導入し,このような要件を満足する経路最適化手法を提案した.さらに,このような手法を探査と学習を伴うオンライン型探索に導入する際の問題点を指摘し,その緩和策となる発見的手法について検討した. また,制度設計と分散制約最適化手法の融合の初期検討として,複数の参加者の利益を考慮する非対称な制約最適化問題において,一部の参加者が系の最適化に協力せず,発見的な貪欲戦略に基づく場合の影響を実験的に分析した.このような非厳密解法の視点には系の規模や問題の複雑さの程度が増大した場合の必要性が考えられる. また,勤務時間割スケジューリング問題に,参加者の公平性を考慮する指標に基づく最適化手法を適用した.さらに大規模問題のために,解法に確率的山登り法を適用する際の影響を実験的に分析した.これにより,指標の種類に固有の探索空間の形状が解品質に影響することや,非厳密解法を用いる場合でも公平性などの性質の一部がある程度は合理的に反映されることが示唆された.
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
多目的最適化における公平性を考慮するスカラ化の指標を経路最適化問題に導入する手法の検討では,最悪コストと不平等性を改善する指標であるleximin/leximaxを可変長の目的ベクトルに拡張し,動的計画法に基づくA*アルゴリズムに適用することにより,この指標のもとで合理的な経路を得ることを示した.また,動的計画法にもとづく,探索と学習を伴う未知の環境下での試行錯誤的な最適化への展開として,オンライン型探索への適用を模索し,探査における単調性が問題となることを示し,これに対する緩和策としての発見的探査を伴うエピソード型学習手法を提案した.これらは,従来の経路最適化手法の指標を置換する拡張の方向性とともに,強化学習等への展開における課題を模索する上での基礎的な成果と考えられる. 制度設計と分散制約最適化手法の融合の初期検討である,複数の参加者の利益を考慮する非対称な制約最適化問題における非協力的な参加者の影響についての検討では,ごく基本的な貪欲的戦略による非協力的行動の利害への影響の程度,非協力的な参加者の発見的な選択について検討した.本質的に単純なアプローチが容易ではないことから,基礎検討に留まったが,これらは今後の検討の準備と考えられる. また,勤務時間割スケジューリング問題に,参加者の公平性を考慮する指標に基づく最適化手法を適用する検討では,確率的山登り法にもとづく非厳密解法が局所解の影響を受ける一方で,指標によっては合理的な解を得ることが実験的に示唆されたことに意義があると考えられる. 以上の結果は一定の知見を得るものであり,今後の本研究の改善の方向を示すと考えられる.
|
Strategy for Future Research Activity |
今年度の検討に基づき,最悪コストと公平性の改善を考慮する経路最適化手法のアプローチについては,未知の環境における試行錯誤的な適応のための強化学習等への展開の可能性を検討するとともに,複数の移動者が存在する場合の経路割り当てへの展開も課題として挙げられる.制度設計と分散制約最適化手法の融合については,非協力的行動とその利害についてのより高度な評価指標に基づく問題設計が今後の検討事項として挙げられる. また,次年度の主要な課題として,大規模かつ複雑な問題に適用可能な問題の設計と解法の開発に取り組む.得に従来の厳密解法と異なるアプローチの手法に不平等性の平準化を考慮する指標を導入する検討を進める.また,これらを伴い,応用的な系を題材とする問題設定における実装と評価が検討事項として挙げられる.
|