2018 Fiscal Year Final Research Report
Activity recognition based on a small scale sparse sensor network
Project/Area Number |
16K00334
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Soft computing
|
Research Institution | The University of Aizu |
Principal Investigator |
ZHAO QIANGFU 会津大学, コンピュータ理工学部, 教授 (90260421)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | 人工知能 / 機械学習 / スマートホーム / 見守りシステム / プライバシー保護 / 在宅見守り |
Outline of Final Research Achievements |
In this research, we developed a monitoring system for taking care of elderly people who lives alone or lives with his/her spouse only. The main results obtained are as follows. 1) We have confirmed that a sparse sensor matrix can recognize the position and activity strength of the resident(s) very accurately, and we have proposed recognition methods based on machine learning; 2) We have proposed a video-based technique for automatic data labeling, and this technique makes it possible to recognition the position / activit strength in realtime; 3) To improve the usability of the sensor matrix, we have designed several sensor modules, and finally proposed a compact module that can be installed in a normal living room easily. Based on the results, we are going to commertialize the sensor module, and provide privacy preserving monitoring services.
|
Free Research Field |
人工知能
|
Academic Significance and Societal Importance of the Research Achievements |
日本のような超高齢者社会において、効率よく高齢者を見守るためには、AIが必要となる。本研究の成果は、プライバシーを守りながら、高齢者の日常活動をある程度見守ることができる。特に提案したセンサーモジュール(出願済み)は、通常の部屋に設置しやすい特徴がある。それを制御する機械学習モデルと合わせれば、近い将来の実用化が期待できる。
|