2018 Fiscal Year Final Research Report
Survey of disaster support needs of developmental disabled persons by ontology and construction of support mechanism
Project/Area Number |
16K00400
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Life / Health / Medical informatics
|
Research Institution | Naragakuen University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
相澤 雅文 京都教育大学, 教育創生リージョナルセンター機構, 教授 (10515092)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | 道路中心線データ / CS立体図 / 機械学習 / 発達障碍 / 災害避難経路 / オントロジー |
Outline of Final Research Achievements |
Although number of persons with developmental disabilities in small areas are not disclosed, this kind of data are useful in developing disaster relief program. Estimation model by machine learning was applied. Due to lack of data on developmental disabilities, those of dialysis patients, pregnant women, low weight infants were used to determine validity of the machine learning. In order to develop logistics to support the developmental disabled persons, road center line data were accumulated. Original data were vector tiles by GeoJSON format. The data were converted into SHAPE type data. Support manuals were collected and surveyed. The manuals were analyzed by ontology to find concepts necessary for the support manual.
|
Free Research Field |
看護情報
|
Academic Significance and Societal Importance of the Research Achievements |
事前に小地域に居住する災害弱者の数を把握することは、援助機材の整備、物資の備蓄、担当専門家の配置など避難計画策定の基礎となるた重要であるが、従来の古典統計手法では精度が十分ではなかった。本研究では機械学習を用いて推測し高い精度で推測可能になった。 発達障碍者の避難は、電動車いすや人工呼吸器とともに移動する場合もあり、避難は困難を極める。避難距離測定、傾斜などの情報が必要でこれらを個人避難計画として策定する必要があるが、従来のGIS(地理情報システム)データだけでは不十分である。道路中心線データとCS立体図を用いて必要な情報が得られるようになった。
|