• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Mechanism of stock market destabilization by interaction of market participants with different time horizons

Research Project

  • PDF
Project/Area Number 16K01259
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Social systems engineering/Safety system
Research InstitutionSeijo University

Principal Investigator

Maskawa Jun-ichi  成城大学, 経済学部, 教授 (30199690)

Co-Investigator(Kenkyū-buntansha) 黒田 耕嗣  日本大学, 文理学部, 教授 (50153416)
Project Period (FY) 2016-04-01 – 2020-03-31
Keywords株式市場 / マルチフラクタル / 確率過程
Outline of Final Research Achievements

Multiplicative random cascade model naturally reproduces the intermittency or multifractality, which is frequently shown among hierarchical complex systems such as turbulence and financial markets. We investigate the validity of a multiplicative hierarchical random cascade model (W-cascade model) through an empirical study using financial data. (1) We have extended the multiplicative model to incorporate an additional stochastic term. Results show that the proposed model is consistent with the relevant empirical results. (2) We have proposed a novel continuous cascade model of volatility formulated as a stochastic differential equation. The results reproduced the pdf of the empirical volatility, the multifractality of the time series, and other empirical facts. (3) We have constructed a log-volatility process for Multifractal Random Walk and consider an exogenous shock and the relaxation process of the volatility.

Free Research Field

経済物理学

Academic Significance and Societal Importance of the Research Achievements

本研究は、株式市場を異なる取引時間スケールを持つ複数の投資主体の集合とみなし,それらの投資主体の相互作用の結果として生じる非線形性に着目した研究である。成果として実証研究の結果と整合的な数理モデルを構築した。この研究により、あらたな市場の動的リスク指標を提案すること、それに加え、暴騰暴落の予兆を検知、抑止し、安定な市場を実現するための施策、制度を立案する上での実証的な基盤が確立できる。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi