• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Neural plasticity in dexterity reacquisition after musculoskeletal trauma

Research Project

  • PDF
Project/Area Number 16K01818
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Applied health science
Research InstitutionOsaka University

Principal Investigator

Ogasawara Issei  大阪大学, 医学系研究科, 助教 (70443249)

Project Period (FY) 2016-04-01 – 2019-03-31
Keywords巧緻性 / 協調性 / スポーツ復帰 / 前十字靭帯 / スポーツ外傷 / 機能評価 / 下肢 / 膝
Outline of Final Research Achievements

This study aimed to evaluate the lower limb dexterity in the recovery process after anterior cruciate ligament (ACL) injury. To this end, we developed a unique device named mDex. We further aimed to evaluate the central plasticity that contributes to the recovery of dexterity; however, this aim was not completed due to technical limitation. Six ACL reconstructed athletes were assessed with the mDex. The athletes were asked to perform a precise target pursuing task with their legs, and their lower limb movements were quantified with mDex. The complexity, smoothness, and accuracy of their limb movements were evaluated. The results showed that the ACL-reconstructed limb showed high complexity, less smooth, and moderately accurate pattern as compared to the uninvolved leg, suggesting that the ACL reconstruction contributes to regain excellent inter-joint coordination. Reconstruction may help not only rebuilding the ligamentous structure but also restoring a dexterity of the movement.

Free Research Field

スポーツ医工学

Academic Significance and Societal Importance of the Research Achievements

ACL損傷後の下肢巧緻性を評価するデバイス(mDex)の開発、作成と、テスト法の確立によって、巧緻性の着目した下肢機能評価の方法を新規に提案できた。本手法は、従来までの臨床テストにはない、動的な中での協調性に着目したものであり、より人らしい動きが回復したかを評価できるものである。ACL再建術等、重篤なスポーツ外傷からの復帰においては、筋力もさることながら、いかに自然な動きが回復しているかが重要である。本手法は、この自然で巧みな協調性を数値化することで、より確度の高いスポーツ復帰判断に貢献するものである。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi