• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

development of control technique for behavior of ionic liquid molecules at graphene/SiC surface and interface

Research Project

  • PDF
Project/Area Number 16K04939
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Applied materials
Research InstitutionUbe National College of Technology

Principal Investigator

IKARI Tomonori  宇部工業高等専門学校, 電気工学科, 教授 (40419619)

Co-Investigator(Kenkyū-buntansha) 内藤 正路  九州工業大学, 大学院工学研究院, 教授 (60264131)
Project Period (FY) 2016-04-01 – 2019-03-31
Keywords表面・界面物性 / グラフェン / SiC / 準安定原子誘起電子分光法 / イオン液体
Outline of Final Research Achievements

We have carried out the preparation of experimental setup for organic molecules (ionic liquids: IL) and the experiments for controlling behavior of organic molecules. In the preparation of experimental setup, we performed the development of metastable atom source with time of flight system and construction of sample preparation chamber with evaporators for organic molecules. Graphene or some reconstructed surface were formed on SiC substrate with annealing temperature. The electric charges at substrate surface were controlled by introducing different kind of atoms to these surface. We observed the influence of the surface structure and electric charge to behavior of organic molecules. In this research, mainly experimental techniques were low energy electron diffraction (LEED) for the observation of surface structure and metastable atom induced electron spectroscopy (MIES) for measurement of electronic structure.

Free Research Field

表面・界面物性

Academic Significance and Societal Importance of the Research Achievements

グラフェン及びSiC再構成表面への異種原子導入による局所的な電荷の制御や最表面構造による有機分子(イオン液体(IL)等)の配向等の振舞を制御できれば、エネルギー貯蔵デバイスの高効率化や微細化へ貢献できる。表面の水素化や酸化に関する知見は、表面の特徴を利用したデバイス開発において、非常に重要である。特に酸化については、アルカリ金属触媒を用いることで、従来のプロセスよりも低温で高効率に良質な膜を形成することが出来る。また、飛行時間差型準安定原子源の開発により、表面上の原子や有機分子による構造を傷つけることなく、最表面から真空側に浸み出した局所的な電子状態の観測を実現した。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi