2021 Fiscal Year Final Research Report
Global F-regularity, Fano variety and the finiteness of Frobenius direct images
Project/Area Number |
16K05092
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Tokyo University of Agriculture and Technology |
Principal Investigator |
Hara Nobuo 東京農工大学, 工学(系)研究科(研究院), 教授 (90298167)
|
Project Period (FY) |
2016-04-01 – 2022-03-31
|
Keywords | 正標数 / フロベニウス直像 / 有限F表現型(FFRT) / 2次元正規次数環 / ファノ多様体 / 大域的F正則 / デルペッツォ曲面 / 代数幾何 |
Outline of Final Research Achievements |
We studied the structure of iterated Frobenius direct images on algebraic varieties and their singularities in positive characteristic, from the viewpoint of the finite F-representation type (FFRT). Our results are as follows. 1. (joint work with Ryo Ohkawa) We studied the FFRT property of 2-dimensional normal graded rings (quasi-homogeneous singularities) in positive characteristic p using the method of algebraic stacks. We proved that a 2-dimensional normal graded ring has FFRT if it has a log terminal singularity; but it does not have FFRT otherwise, except for some exceptional cases depending on p. 2. We studied the FFRT property of the anti-canonical ring of a quintic del Pezzo surface X in positive characteristic. We constructed a self-dual indecomposable vector bundle of rank 3 that appears as a direct summand of self-dual Frobenius direct images on X. We have also shown that the anti-canonical ring has FFRT in characteristics 2 and 3.
|
Free Research Field |
代数学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は,正標数p,すなわち素数pについて,任意の数をp回足すと0になってしまう世界で,多項式系の零点集合として定義される図形(代数多様体)の大域的および局所的な性質を研究するものです.正標数の数学は暗号符号などへの応用もありますが,本研究はこれらの応用と直接的には関係せず,正標数特有の時として奇妙にも映る現象の中に,純粋数学的な意義と美しさを見出して,これを探求するものです.
|