• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Global F-regularity, Fano variety and the finiteness of Frobenius direct images

Research Project

  • PDF
Project/Area Number 16K05092
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionTokyo University of Agriculture and Technology

Principal Investigator

Hara Nobuo  東京農工大学, 工学(系)研究科(研究院), 教授 (90298167)

Project Period (FY) 2016-04-01 – 2022-03-31
Keywords正標数 / フロベニウス直像 / 有限F表現型(FFRT) / 2次元正規次数環 / ファノ多様体 / 大域的F正則 / デルペッツォ曲面 / 代数幾何
Outline of Final Research Achievements

We studied the structure of iterated Frobenius direct images on algebraic varieties and their singularities in positive characteristic, from the viewpoint of the finite F-representation type (FFRT). Our results are as follows.
1. (joint work with Ryo Ohkawa) We studied the FFRT property of 2-dimensional normal graded rings (quasi-homogeneous singularities) in positive characteristic p using the method of algebraic stacks. We proved that a 2-dimensional normal graded ring has FFRT if it has a log terminal singularity; but it does not have FFRT otherwise, except for some exceptional cases depending on p.
2. We studied the FFRT property of the anti-canonical ring of a quintic del Pezzo surface X in positive characteristic. We constructed a self-dual indecomposable vector bundle of rank 3 that appears as a direct summand of self-dual Frobenius direct images on X. We have also shown that the anti-canonical ring has FFRT in characteristics 2 and 3.

Free Research Field

代数学

Academic Significance and Societal Importance of the Research Achievements

本研究は,正標数p,すなわち素数pについて,任意の数をp回足すと0になってしまう世界で,多項式系の零点集合として定義される図形(代数多様体)の大域的および局所的な性質を研究するものです.正標数の数学は暗号符号などへの応用もありますが,本研究はこれらの応用と直接的には関係せず,正標数特有の時として奇妙にも映る現象の中に,純粋数学的な意義と美しさを見出して,これを探求するものです.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi