2021 Fiscal Year Final Research Report
Spectra of Laplacians for Kaehler graphs
Project/Area Number |
16K05126
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Nagoya Institute of Technology |
Principal Investigator |
Adachi Toshiaki 名古屋工業大学, 工学(系)研究科(研究院), 教授 (60191855)
|
Project Period (FY) |
2016-04-01 – 2022-03-31
|
Keywords | ケーラーグラフ / 隣接行列 / 正規性 / ゼータ関数 / 2色彩道 / 誘導グラフ |
Outline of Final Research Achievements |
A Kaehler graph is formed by sets of vertices, of principal edges and of auxiliary edges. On this graph we consider (p,q)-bicolored paths which are formed by p-step paths of principal edges followed by q-step paths of auxiliary edges. We studied the (p,q)-zeta function, which is the generating function of closed (p,q)-bicolored paths, and showed that it is meromorphic on the whole plane. Though Kaehler graphs themselves are non-directed, their (p,q)-zeta functions have properties similar to those for directed graphs. Therefore, as a model corresponding to complex space forms, we considered normal Kaehler graphs which are regular and whose adjacency matrices obtained by principal and auxiliary edges are commutative. Under an assumption on a given Kaehler graph, we could show connectivity and non-bipartiteness of the (p,q)-derived graph for every pair (p,q) by studying eigenvalues of adjacency operators, and obtain poles of zeta functions only by properties of the Kaehler graph.
|
Free Research Field |
リーマン幾何学
|
Academic Significance and Societal Importance of the Research Achievements |
頂点と辺とからなるグラフは、古くからリーマン多様体の離散モデルとして扱われてきて、辺の連続である道は測地線に対応すると考えられ、辺による頂点の隣接性を表す隣接作用素は情報伝搬表示として多様体のラプラシアンに相当する物として考察されてきた。研究者は、幾何構造を持つリーマン多様体では測地線だけではなく幾何構造に付随した曲線族をも対象として考察し、幾何構造に対応する磁場のもとでの軌道の研究をしてきた。今回の研究ではこのような多様体の離散モデルを構成し、軌道やラプラシアンに相当する物を導入して基本性質を調べることで、複素等質多様体に対応する正規ケーラーグラフを得、この方面の研究の基礎が構築された。
|