• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Research on Fourier integrals and singular interals

Research Project

  • PDF
Project/Area Number 16K05195
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionKanazawa University

Principal Investigator

Sato Shuichi  金沢大学, 学校教育系, 教授 (20162430)

Project Period (FY) 2016-04-01 – 2020-03-31
Keywordssingular integrals / square functions / Hardy spaces / Sobolev spaces
Outline of Final Research Achievements

We considered singular integrals on homogeneous groups including Heisenberg groups and established weak type estimates on the weighted Lebesgue spaces. The kernel of the singular integral is assumed to have no regularity and only a size condition and cancelation were assumed. Characterizations of Hardy spaces on homogeneous groups and some Sobolev spaces were obtained in terms of Littlewood-Paley functions and Lusin area integrals.

Free Research Field

調和解析, Fourier 解析

Academic Significance and Societal Importance of the Research Achievements

ある種の特異積分作用素を考えて, その荷重 Lebesgue 空間上での弱有界性が示された. ここで, 特異積分作用素には滑らかさの正則性が仮定されていなく, サイズに関する最小の仮定と cancellation に関する仮定が置かれているのみである. Littlewood-Paley 関数, Lusinの面積積分により斉次群上のHardy 空間の特徴づけ, ある種のSobolev 空間の特徴づけが得られた.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi