2019 Fiscal Year Final Research Report
Mathematical Problems in Application of Wavelet Analysis and Signal Processing
Project/Area Number |
16K05216
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Osaka Electro-Communication University |
Principal Investigator |
Mandai Takeshi 大阪電気通信大学, 共通教育機構, 教授 (10181843)
|
Co-Investigator(Kenkyū-buntansha) |
芦野 隆一 大阪教育大学, 教育学部, 教授 (80249490)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Keywords | ウェーブレット / 解析信号 / 瞬間振幅 / 画像分離 / フレーム |
Outline of Final Research Achievements |
1. We got a new inequality about the instantaneous amplitude of a signal which can be considered to be a function mathematically. 2. We considered continuous wavelet transforms which do not satisfiy addmissibility condition, which is well-known as a condition guaranteeing a good inverse transform, and we got several formulas which is related with possible inverse formulas. 3. We got a new inequality about Parseval frames. 4. We considered image separation problem which extract information about original images from several observed images which are unknown mixtures of the original signals. We made several algorithms, and made several simulations.
|
Free Research Field |
ウェーブレット解析
|
Academic Significance and Societal Importance of the Research Achievements |
時間周波数解析(または信号処理全般)は、さまざまな応用がなされているが、個々の応用においてなぜそれでうまくいくかの理論的な基礎付けが明らかでないものも多い。応用において使われている時間周波数解析(特にウェーブレット解析)や信号処理に関連する手法にかかわる数学的な問題に対して、応用のされ方を意識しつつ、数学的観点からうまくいくからくりを明らかにすることを目標としており,これはうまくいく手法の理解を深め新たな手法の開発に資すると期待される.
|