• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Deevelopment of Geometric and Microlocal Analysis

Research Project

  • PDF
Project/Area Number 16K05221
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionUniversity of the Ryukyus

Principal Investigator

CHIHARA Hiroyuki  琉球大学, 教育学部, 教授 (70273068)

Research Collaborator ONODERA Eiji  高知大学
Project Period (FY) 2016-04-01 – 2019-03-31
Keywordsシーガル・バーグマン空間 / バーグマン変換 / エルミート展開
Outline of Final Research Achievements

The purpose of this project is to study the analysis of functions on manifolds and mappings between manifolds, and the functional analysis related to microlocal analysis. We have some results concerned with functional analysis on the Bargmann-type integral transforms on the Euclidean spaces. The most important results of this project is to obtain the necessary and sufficient conditions on holomorphic gaussian functions on the complex Euclidean spaces so that they have creation and annihilation operators satisfying the canonical commutation relations and become generators of the complete orthonormal system on the Segal-Bargmann space, which is a reproducing-kernel Hilbert space of entire functions.

Free Research Field

幾何解析

Academic Significance and Societal Importance of the Research Achievements

本研究の成果は、これまでバーグマン型の積分変換やシーガル・バーグマン空間とは無関係に個別かつ具体的に研究されてきたいくつかの話題に関して、正統派と考えられるこれらの視点を導入し、従来よりも深い理解が得られた、あるいは、一般論を構築して従来の知見は特殊な具体例であることを示したものが多い。また、研究対象が、解析学だけでなく組合せ論の数え上げや特殊関数論などに一見無関係な話題と関連して発展する可能性がある。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi