• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

New framework of multiple kernel learning

Research Project

  • PDF
Project/Area Number 16K05264
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionHokkaido University

Principal Investigator

Tanaka Akira  北海道大学, 情報科学研究科, 教授 (20332471)

Project Period (FY) 2016-04-01 – 2019-03-31
Keywords機械学習 / カーネル回帰 / 再生核 / 再生核ヒルベルト空間 / 汎化性能
Outline of Final Research Achievements

We obtained the following two results in kernel-based machine learning.
1. We analyzed the theoretical limit of conventional multiple kernel learning, and clarified that (a) the optimal solution based on an ordinary 2-norm criterion can not achieve the theoretical limit of the multiple kernel model, and (b) the optimal solution is identical to the solution based on a certain single kernel model.
2. We developed a novel framework of kernel-based learning in which the autocorrelation prior of the unknown true function is taken into account, and also clarified that the autocorrelation function itself is the best kernel in terms of the expectation.

Free Research Field

機械学習

Academic Significance and Societal Importance of the Research Achievements

現代社会において、機械学習理論が果たす役割がますます増大するであろうことは最早論を俟たない。一方、それら技術の実用面での爆発的な発展とは裏腹に、理論的な背景や基盤が置き去りにされていることは、当該分野の未来にとって由々しき事態であると言わざるを得ない。
本研究課題で得た成果は、主に、機械学習理論における理論整備として位置づけられるものであり、当該分野の科学的な側面を補強する一助になるものと期待できる。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi