2018 Fiscal Year Final Research Report
Novel Construction Scheme of High-Dimensional Sequence having Particular Structures
Project/Area Number |
16K05281
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Foundations of mathematics/Applied mathematics
|
Research Institution | Niigata University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
前田 多可雄 会津大学, コンピュータ理工学部, 上級准教授 (00264565)
渡辺 曜大 会津大学, コンピュータ理工学部, 上級准教授 (70360675)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | 系列設計 / 離散数学 / 計測工学 / 無線通信 |
Outline of Final Research Achievements |
We have investigated schemes for novel construction schemes of sequence sets having a zero-correlation zone, so-called ZCZ sequence sets consisting of subsets. The correlation function of the sequences pair of different subsets has a ZCZ with a greater width than that of the correlation function of sequences of the same subset. The width of the ZCZ of the inter-subset is designed with a particular structure as follows; 1) The subsets of sequence set can be associated with a perfect binary tree. For a longer distance between the corresponding leaves to the sequences pair, the ZCZ is wider. 2) The subsets of the proposed sequence set can be associated with a perfect quad-tree. 3) The width of the ZCZ between a sequence of the j-th subset and one of the k-th subset of the proposed sequence sets is almost proportional to the |j-k|. We have evaluated the performance of several applications, including wireless communications, ultrasonic imaging, and visible secret sharing.
|
Free Research Field |
応用数理
|
Academic Significance and Societal Importance of the Research Achievements |
相関関数の値がある位相差範囲で零となるZCZ 系列セットを何等かの応用システムで用いる場合、従来のZCZ系列セットでは、系列セットペアの組み合わせによって、系統的に零相関となる位相差を制御することが困難であった。応用システムでは、システムで用いるセンサーや、無線ノードの組合せによって必要な零相関範囲が異なる。本研究課題では、ZCZ系列にサブセットをもたせ、異なるサブセットにそれぞれ属する系列ペアの相関関数について、サブセットの組み合わせによって零相関範囲を制御有する方法を複数発見した。これによって、ZCZ系列セットそのものと、ZCZ系列セットの応用の両方において新たな道を拓くことができた。
|