• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Oscillatory Motion of Collective Self-Propelled Particles

Research Project

  • PDF
Project/Area Number 16K05486
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical physics/Fundamental condensed matter physics
Research InstitutionMeiji University

Principal Investigator

Suematsu Nobuhiko  明治大学, 総合数理学部, 専任准教授 (80542274)

Co-Investigator(Kenkyū-buntansha) 西森 拓  広島大学, 統合生命科学研究科, 教授 (50237749)
池田 幸太  明治大学, 総合数理学部, 専任准教授 (50553369)
参納 弓彦  明治大学, 総合数理学部, 特任講師 (60612554)
Research Collaborator Nakata Satoshi  
Matsuda Yui  
Project Period (FY) 2016-04-01 – 2019-03-31
Keywords界面化学 / 非線形科学 / 自己駆動 / 分岐理論
Outline of Final Research Achievements

Self-propelled particles is the object what spontaneously moves using chemical energy. A camphor disk is one of the self-propelled particle that slides on water. We previously observed mode bifurcation of camphor motion with change in the number of disks. However, its mechanism is under investigation. In this project, we approached this problem from both experimentally and mathematically. For simplify the system, the number of disk was fixed, and the area of water surface was sequentially varied. As the results, similar mode bifurcation was observed, i.e., continuous motion in large area, oscillatory motion in middle area, and stationary state in small area. This mode bifurcation for a single disk was successfully reproduced using mathematical model that was obtained with modified the typical model for camphor motion. Our mathematical approach indicated that oscillatory motion is appeared by instability of continuous motion.

Free Research Field

物理化学

Academic Significance and Societal Importance of the Research Achievements

自己駆動粒子は、人間による遠隔操作や細かな命令系統を必要としないシンプルな運動システムである。そのような自己駆動粒子の運動モードの多様化は、生命に見られる自律性の起源に迫る学理的な意義や、ソフトロボットのような工学的な応用など、幅広い分野に影響を与える基礎的な研究である。今回、同じ機能を持つ運動素子(しょうのう粒)の数密度が変わるだけで、個々の運動モードが変化するという現象の機構を解明した。これは、周辺の環境と運動素子との相互作用により生まれるモード変化であり、微生物に見られるクオラムセンシングの機構にも良く似ている現象であることが分かった。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi