2020 Fiscal Year Final Research Report
Microscopic theory of Stokes resistance
Project/Area Number |
16K05512
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Biological physics/Chemical physics/Soft matter physics
|
Research Institution | Niigata University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
秋山 良 九州大学, 理学研究院, 准教授 (60363347)
|
Project Period (FY) |
2016-04-01 – 2021-03-31
|
Keywords | ストークス則 / 拡散 / 佐々の方法 |
Outline of Final Research Achievements |
Stokes' law describes the force exerted on a macroscopic solute from flowing solvent particles using the hydrodynamic equations with a boundary condition on the solute surface. In the present study, the boundary condition is exactly derived from Hamiltonian equations even at a high solvent density, such as a liquid state. It is derived from the large-solute particle limit in regions far from and near the solute particle. From the limit near the solute, the slip boundary condition is always obtained if the solute-solvent particle interaction depends solely on the distance between particles. In addition, the deviation from the slip boundary condition is obtained by perturbation expansion in solute-solvent size ratio.
|
Free Research Field |
化学物理、統計力学
|
Academic Significance and Societal Importance of the Research Achievements |
物体に沿って液体を流すというのは多くの現象に見られ、また応用も多岐にわたる。特に物体が球形の場合は拡散と関係があり、生体内の物質輸送や工学的な応用も高いと考えられる。たとえば、大きい粒子であるにもかかわらず、大きく拡散することができれば、物質の輸送に有利であると考えられる。その鍵を握るのは粒子の表面の境界条件であり、この境界条件と微視的な粒子間相互作用により制御できれば、拡散のしやすさも設計できる。この研究では、境界条件と相互作用の関係を明らかにできた。
|