2018 Fiscal Year Final Research Report
Enhancement in thermoelctric performance of inorganic/organic hybrid superlattices by controlling charge and phonon transport
Project/Area Number |
16K05947
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Inorganic industrial materials
|
Research Institution | Nagoya Industrial Science Research Institute (2018) Toyota Physical and Chemical Research Institute (2016-2017) |
Principal Investigator |
Koumoto Kunihito 公益財団法人名古屋産業科学研究所, 研究部, 上席研究員 (30133094)
|
Research Collaborator |
SHIN Woosuck
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | 熱電材料 / 無機有機ハイブリッド / 超格子 / 電子輸送 / フォノン輸送 / 出力因子 / 性能指数 / フレキシブルデバイス |
Outline of Final Research Achievements |
TiS2-based intercalation complexes with 2D superlattice structures demonstrate high thermoelectric (TE) performance below 100℃ as well as mechanical flexibility. A new inexpensive LESA(Liquid Exfoliation-Self-Assembly) process was developed to produce large-area films, and a prototype thin-film TE module consisted of n-type TiS2/organics hybrid-superlattices and p-type PEDOT:PSS polymer conductor generated a high power density of 2.5 Wm-2 at a temperature gradient of 70K, which hit a new record among the organic-based flexible TE devices. Moreover, we succeeded in controlling the carrier concentration through thermal de-intercalation of organics by post-annealing and achieved a remarkably high power factor, PF=0.9 mWm-1K-2 at 300 K (ZT~0.24). TiS2-AgSnSe2 nanocomposites successfully achieved ZT~0.8@700K through intercalation and a contribution of ionized impurity scattering, which indicates the possibility of enhancing TE performance of TiS2-based hybrid superlattice materials.
|
Free Research Field |
無機材料化学
|
Academic Significance and Societal Importance of the Research Achievements |
すべてのものがインターネットでつながるIoT社会において、IoT端末を構成する微小センサや通信デバイスを駆動するための電源としてバッテリーに替わるエナジーハーベスターが求められている。光、熱、力学エネルギーなどをフルに活用するハーベスターが開発される中で、特に人の体熱を利用する微小熱電発電機が有望視され、健康・医療分野や太陽光熱発電分野などへの応用が期待されている。本研究で開発したフレキシブル熱電材料はこの期待に十分応える材料になるであろう。
|