• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Highly-accurate turbulent analysis of multistage transonic axial compressor using the proper orthogonal decomposition

Research Project

  • PDF
Project/Area Number 16K06087
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Fluid engineering
Research InstitutionIwate University (2018)
Kyushu University (2016-2017)

Principal Investigator

Yamada Kazutoyo  岩手大学, 理工学部, 准教授 (00344622)

Research Collaborator FURUKAWA Masato  九州大学
SAITO Seishiro  九州大学
MATSUOKA Akinori  川崎重工業
NIWA Naoyuki  川崎重工業
Project Period (FY) 2016-04-01 – 2019-03-31
Keywords大規模数値解析 / 遷音速多段軸流圧縮機 / ガスタービン / 流動損失 / LES
Outline of Final Research Achievements

A transonic axial compressor is used for advanced high efficient gas turbines. For transonic axial compressors, it is not easy to understand details of internal flow field by experimental tests. It follows that highly accurate prediction of internal flow field with numerical simulation serves as an important design technique. In this study, a large-scale computation of LES (Large Eddy Simulation) with a dense computational mesh was conducted for a transonic axial compressor of a gas turbine. Complicated flow phenomena inside the compressor were clarified by applying the intelligent data mining technique to the LES result obtained. Loss generation corresponding to each flow phenomenon was identified and quantitatively evaluated by calculating the entropy generation rate.

Free Research Field

流体工学

Academic Significance and Societal Importance of the Research Achievements

本研究では,ガスタービン用遷音速軸流圧縮機について,稠密な計算格子を用いた大規模LES(Large Eddy Simulation)解析を実施した.これまで,多段軸流圧縮機の全段・全周計算は大規模な計算資源を要求するため,稠密格子による高精度な数値予測が困難であり,本研究で実施したような計算は行われてきていない.遷音速多段軸流圧縮機の大規模数値解析により,詳細な流動メカニズム解明および流動損失の定量的評価を実施することができた.本研究で実施した内容は,損失モデル構築につながり,圧縮機空力設計技術の高度化に寄与する.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi