2019 Fiscal Year Final Research Report
Epigenetics of disease associated SNPs
Project/Area Number |
16K07218
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Medical genome science
|
Research Institution | National Center for Global Health and Medicine |
Principal Investigator |
Takeuchi Fumihiko 国立研究開発法人国立国際医療研究センター, その他部局等, 室長 (50384152)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Keywords | エピジェネティクス / 細胞種 / エピゲノムワイド関連解析 / 遺伝子発現解析 / QTL解析 / 遺伝統計学 |
Outline of Final Research Achievements |
Genome-wide association studies have identified many SNPs associated with various diseases, yet the disease mechanism has been elucidated for a small number of SNPs. In order to elucidate the disease mechanism, we need to understand in which tissue or cell type the SNPs function. Here, I developed a statistical model that predicts the effect of a SNP in a specific tissue or cell type, and performed experimental verification. I assessed tissue heterogeneity among human T cells, brain and placenta. I developed a causal model for epigenetic status and disease. I also developed a statistical method to predict the cell-type-specific epigenetic effect of a SNP.
|
Free Research Field |
遺伝統計学
|
Academic Significance and Societal Importance of the Research Achievements |
個人のDNAの違いにより、病気の罹りやすさが変わることが分かってきている。これはゲノムワイド関連解析という研究手法で解明されてきた。「DNAの違い→細胞の変化→病気」の両端の関係は分かってきたが、実は真ん中の「細胞の変化」が未解明である。本研究では、細胞の変化を推測するための統計解析法omicwasを開発した。ある組織・細胞種でどのような細胞の変化が起きているかが重要であり、これはomicwasにより推測できる。推測結果は、次段階の生物学実験をデザインするための指標になる。
|