• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Development of prediction model of fatal blood concentrations for designer drugs

Research Project

  • PDF
Project/Area Number 16K09200
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Legal medicine
Research InstitutionThe University of Tokyo

Principal Investigator

Saka Kanju  東京大学, 大学院医学系研究科(医学部), 技術専門職員 (30447388)

Co-Investigator(Kenkyū-buntansha) 工藤 恵子  九州大学, 医学研究院, 講師 (10186405)
Research Collaborator IWASE hirotaro  
Project Period (FY) 2016-04-01 – 2019-03-31
Keywords予測モデル / 血中致死濃度 / 危険ドラッグ / QSAR
Outline of Final Research Achievements

We examined the best processes for building a model predicting fatal blood concentrations using reliable fatal blood concentration data where many fatal cases have been reported. Quantitative structure-activity relationship was used to build the prediction models. As a result of creating various models, the optimal descriptors were different for each target drug. Therefore, we devised a method to create a prediction equation for each drug. In this method, instead of using all known fatal concentration data, drugs whose structures are similar to that of the target drug are extracted by similarity search, and a model is built using only the extracted data. The introduction of this procedure improved the prediction accuracy, and it was considered that a better prediction model could be built by using drug data with similar structure even for new drugs.

Free Research Field

法中毒学

Academic Significance and Societal Importance of the Research Achievements

法医鑑定において、薬物が死因に寄与したかどうかを判断するために、該当試料の血液中濃度と文献記載の中毒・致死濃度が比較検討される。しかし、致死濃度が判明していない危険ドラッグなどの新規薬物では判断が難しくなる。これらの問題を解決するために、本研究では、薬物の血中致死濃度予測モデルの構築を試みた。
本研究によって、新規の薬物に対しても、その致死濃度を推測することが可能になった。また、in silicoを用いた理論的なアプローチであるため、危険ドラッグのように薬物の側鎖を少し変化させたときの化学構造とその毒性との関連性を考察することが可能になった。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi