• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Development of hybrid high-density surface electromyography and ultrasound recording system for early diagnosis of ALS

Research Project

  • PDF
Project/Area Number 16K09717
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Neurology
Research InstitutionKobe University

Principal Investigator

SEKIGUCHI KENJI  神戸大学, 医学研究科, 准教授 (70533793)

Project Period (FY) 2016-04-01 – 2020-03-31
Keywords筋萎縮性側索硬化症 / 高密度表面筋電図 / 筋超音波検査 / 針筋電図 / 臨床神経生理学 / 磁化率強調画像
Outline of Final Research Achievements

We developed the ‘Hybrid high-density surface electromyography (HD-sEMG) and Ultrasound (US) recording system’, to detect fasciculation which is useful for early diagnosis of ALS. HD-sEMG was produced with holes in the urethane thin-layer gel and placed a wire electrode on the lower part of the sheet. Hybrid recording system was developed that inputs the output from electromyography machine and ultrasound examination machine to a video mixer via HDMI, mixes the split-displayed video with the video mixer, and records it as a moving image. Total of 24 simultaneous recordings of fasciculations in ALS patients were performed. 415 fasciculations with high-density surface electrodes and 162 fasciculations with ultrasound images were recorded simultaneously in the same regions. This system is expected to contribute not only to the improvement of ALS diagnostic technology but also to the development of clinical electromyography.

Free Research Field

臨床神経生理学

Academic Significance and Societal Importance of the Research Achievements

ALSの治療法開発が進展しているが,その中で発症早期の症例に対しての治療介入効果が高いことが報告されている.ALSの早期診断は難しいとされてきたが,本研究で得られた装置・技術を使用することで,非侵襲的に発症早期の症例を診断していける可能性がある.またシステムを構成する装置はいずれも安価で入手可能で,従来の検査装置に外装して容易に実装可能なため,多くの施設で応用可能である.さらに,従来難解とされていた筋電図検査所見を引き起こしている筋の動きを超音波で同時に確認できる技術は,新たな視点で筋電図を解釈することを可能にし,将来の臨床筋電図学の発展に貢献できる側面もある.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi