• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Analysis and visualization of sequential data for discovery without learning

Research Project

  • PDF
Project/Area Number 16K12428
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Multimedia database
Research InstitutionThe University of Tokyo

Principal Investigator

Ohsawa Yukio  東京大学, 大学院工学系研究科(工学部), 教授 (20273609)

Research Collaborator Hayashi Teruaki  
Kasuga Akira  
Iwasa Daiji  
Yanaka Hitomi  
Wang Jianshi  
Ikegami Kenshin  
Masui Norisada  
Liu Keyang  
Qi Ji  
Yang Rui  
Zhao Xiaoyi  
Zeng Yanyuan  
Yi Ji  
Zhang Quexuan  
Kishi Yoshiki  
Iwanaga Hiroo  
Yoshitaka Shitnaro  
Emoto Mamoru  
Takemura Kota  
Naraoka Makoto  
Project Period (FY) 2016-04-01 – 2019-03-31
Keywords学習なき発見 / 時系列分析 / 変化の説明 / 潜在時間スケール / 変数選択 / 変数クエスト / 社会的ニーズ調査
Outline of Final Research Achievements

After grasping the need for qualitatively explaining the cause of change, it was confirmed that there is a need for technology to explain the cause of change from time series data in which various time scales are mixed. In line with this need, we established Tangled String (TS), which visualizes the start and end points of an entanglement (pill) as change points, and its extension method and evaluation method. In addition, while obtaining a group of algorithms that detect change points and explain them without learning, we also got results that produce machine learning methods that also explain the uncertainty of time series. We also developed Variable Quest that proposes just enough variables to be used in the method. The developed technology was applied to SNS, POS, and earthquakes to obtain results. We also surveyed the social needs of the outcome.

Free Research Field

データ市場設計学

Academic Significance and Societal Importance of the Research Achievements

データ利活用におけるニーズと、データと、データ分析技術等のマッチングを行うIMDJワークショップから、本研究の考え方で変化の原因を説明することへのニーズが実業界で強いことが明らかとなった。しかし、実際の社会・自然における変化には多様なタイムスケールが混在するため、従来手法では変化原因の説明が難しかった。この問題を解決することは基礎学術における進展であり、フェーズ①ニーズに答える技術的アプローチの検討, フェーズ②Tangled String(TS)を起点とする時間窓最適化, TSにかわるアルゴリズム群開発, フェーズ③ 実社会への適用と期待感の調査を行う手順により社会的意義も確保し続けた。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi