• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Developing Generative Machine Learning and its Digital Circuit Implementation by Leveraging Neuronal Stochastic Behavior

Research Project

  • PDF
Project/Area Number 16K12487
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Intelligent informatics
Research InstitutionKobe University

Principal Investigator

Matsubara Takashi  神戸大学, システム情報学研究科, 助教 (70756197)

Co-Investigator(Kenkyū-buntansha) 上原 邦昭  神戸大学, システム情報学研究科, 教授 (60160206)
Project Period (FY) 2016-04-01 – 2019-03-31
Keywordsニューラルネットワーク / ゆらぎ / 機械学習
Outline of Final Research Achievements

This study aimed at developing a new generative machine learning algorithm and implementation method by leveraging the stochastic behavior (uncertainty) and spike-time coding, which biological neural networks have and artificial ones do not. We derived a mathematical model bridging the gap between stochasticity and homeostasis of neurons. We proposed a biologically-plausible learning algorithm by considering the discrete spikes as sampled drawn from a probabilistic distribution. For circuit implementation, we proposed a new approximation method that requires only one-third circuit resources. We also proposed some practical methods based on the stochasticity.

Free Research Field

機械学習と計算論的神経科額

Academic Significance and Societal Importance of the Research Achievements

本研究は(1)生物の脳が学習するメカニズムにおいて,従来不明であったゆらぎの貢献や時間的な適応について,数式によるモデルを構築できた.(2)確率的な現象をモデル化できる機械学習手法であるボルツマンマシンを,高密度に電子回路実装する手法を開発した.(3)いわゆる深層学習に確率的要素(ゆらぎや不確実性)を持ち込むことで,高い精度を達成したり,小規模データへ適応可能な手法を開発できた.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi