• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Engineering of the Orientation Polarization of Organic Semiconductor Molecules toward the Development of Revolutionary Organic Electronic Devices

Research Project

  • PDF
Project/Area Number 16K14102
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Device related chemistry
Research InstitutionTokyo University of Science

Principal Investigator

Nakayama Yasuo  東京理科大学, 理工学部先端化学科, 講師 (30451751)

Co-Investigator(Kenkyū-buntansha) 細貝 拓也  国立研究開発法人産業技術総合研究所, 計量標準総合センター, 主任研究員 (90613513)
Research Collaborator TSURUTA Ryohei  
HIKASA Masataka  
YAMANAKA Soichiro  
YOSHIDA Koki  
IWASHITA Masaki  
SANTOU Shuhei  
TONAMI Ko  
MORI Toshiaki  
IMAI Kento  
NAWATA Takanori  
TAKAHASHI Kana  
TAKEUCHI Riku  
Project Period (FY) 2016-04-01 – 2019-03-31
Keywords有機エレクトロニクス / ヘテロエピタキシー / 熱活性化遅延蛍光 / 分子間バンド分散 / 角度分解光電子分光法
Outline of Final Research Achievements

The "shape" of a molecule is one freedom proper to organic semiconductor materials. Therefore, technologies for controlling the molecular orientation potentially lead to revolutionary developments in the organic electronic devices. In the present study, innovation of methodologies for controlling the orientation of the organic semiconductor molecules was attempted, and also impacts of the molecular orientation on the electronic functionalities of the organic semiconductors were elucidated. As a significant achievement of this project, the presence of delocalized wave-like charge carriers was successfully demonstrated in epitaxially grown crystalline thin films of highly well-ordered orientation of the organic semiconductor molecules.

Free Research Field

材料化学

Academic Significance and Societal Importance of the Research Achievements

分子を秩序正しく整列させた結晶において実現する分子間に拡がった波動的な電子状態は,有機半導体固体内部でのスムーズな電荷輸送を可能にすることが知られており,有機エレクトロニクスの弱点である低い電荷輸送効率を改善する一つの鍵になると期待されている。分子の向きを規則正しく整列させた結晶性の有機半導体薄膜を製造し,さらにこうした高秩序な分子配列が波動的で輸送効率の高い電荷の状態を生むことを実証した本研究の成果は,分子の向きと電子機能性を直接橋渡しするという学術的意義だけでなく,潜在的には将来の高効率な有機エレクトロニクス開発につながる社会的意義も有している。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi