• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Prediction of Wind-Induced Natural Ventilation Rate caused by Turbulence considering Pulsation Flow

Research Project

  • PDF
Project/Area Number 16K14347
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Architectural environment/Equipment
Research InstitutionOsaka University (2018)
Osaka City University (2016-2017)

Principal Investigator

Kobayashi Tomohiro  大阪大学, 工学研究科, 准教授 (90580952)

Co-Investigator(Kenkyū-buntansha) Lim Eunsu  東洋大学, 理工学部, 准教授 (50614624)
Research Collaborator Sandberg Mats  
Fujita Takuya  
Domoto Hiroki  
Project Period (FY) 2016-04-01 – 2019-03-31
Keywords自然換気 / 風力換気 / 脈動 / 風洞実験 / CFD / LES
Outline of Final Research Achievements

This research deals with a problem that the conventional prediction method of wind-induced natural ventilation rate cannot work well for a case with small wind pressure coefficient (Cp value) difference. To propose simplified prediction method of the flow rate, the wind tunnel test was first performed to obtain true value which is to be compared with numerical result. The main work was carried out by CFD using Large Eddy Simulation (LES). By changing the location of the openings, i.e., Cp value difference, a parametric study was conducted. A simplified prediction method of the flow rate was finally proposed by evaluating 3 important parameter, 1) mean Cp value difference, 2) standard deviation of Cp value difference, and 3) velocity in the vicinity of the opening.

Free Research Field

建築環境工学

Academic Significance and Societal Importance of the Research Achievements

本研究で対象とした乱れによる換気量の予測式は従来の予測手法では評価が不可能な微小な風圧係数差条件でも適切に換気量を予測することができる手法である。建物が密集する実際の市街地ではこのように開口間の風圧係数差が小さくなることも多く、適切な換気量予測式が存在しないことで省エネルギーのための自然換気設計自体を断念することにも繋がる可能性があるため、現実に多く存在する状況での適切な予測式を提案したことは今後の自然換気設計啓蒙の意味で社会的に意義があると言える。また、本研究は当該分野の欠落箇所を補完する換気力学の基礎研究でありこの意味での学術的意義も大きいと言える。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi