• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Theory and application of unsupervised learning for Network data and functional data

Research Project

  • PDF
Project/Area Number 16K16024
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Statistical science
Research InstitutionOsaka University

Principal Investigator

Terada Yoshikazu  大阪大学, 基礎工学研究科, 助教 (10738793)

Project Period (FY) 2016-04-01 – 2019-03-31
Keywords関数データ解析 / グラフ分割 / クラスタリング / 教師なし学習 / 半教師なし学習 / 機械学習
Outline of Final Research Achievements

With recent advances in computer and measurement technologies, big and complicated data have been common in various application fields, and thus the importance of unsupervised learning has been recognized. In this research, I dealt with the following 4 research topics related to unsupervised learning for the complicated data: (1) I studied theoretical properties of graph-partitioning clustering method, (2) I developed a new semi-supervised learning method for functional data with theoretical guarantees and used the proposed algorithm to identify handball players who are at-risk for anterior cruciate ligament (ACL) injury based on ground reaction force data, (3) I developed a general approach via multiscale bootstrap to selective inference with theoretical guarantees, (4) I developed a new regularized subspace clustering algorithm for functional data which is based on a cluster-separation criterion in the finite-dimensional subspace.

Free Research Field

統計科学,機械学習

Academic Significance and Societal Importance of the Research Achievements

本研究では,実社会への応用を想定し,応用上重要な問題に対して,新しい教師なし学習法の開発や理論的性質の解明を行っている.例えば,研究(1)では教師なし分類法において金字塔と呼べる広く用いられているクラスタリング法に関して,これまで明らかとなっていなかった重要な理論的性質を解明している.さらに,本研究では,理論研究にとどまらず,実社会の問題への応用を実際に行っている.実際に,研究(2)ではスポーツ医学の分野において,提案手法を適用することで怪我のリスクのある選手の特定に成功している.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi