• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Assessment of Measures to Promote Next Generation Vehicles: Empirical Analyses at Grade Level

Research Project

  • PDF
Project/Area Number 16K17112
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Economic policy
Research InstitutionAoyama Gakuin University

Principal Investigator

KITANO Taiju  青山学院大学, 国際マネジメント研究科, 准教授 (70553444)

Project Period (FY) 2016-04-01 – 2019-03-31
Keywords自動車市場 / 次世代自動車 / 離散選択モデル / 構造推定 / 政策評価
Outline of Final Research Achievements

It is common practice for automobile firms to offer multiple grades for each of their car models. Consideration of the variant-level heterogeneity is an important element in assessing attribute-based policy interventions, such as tax incentives for next generation cars, because of substantial grade-level differences in attributes within a model. This study presented a discrete choice model of product differentiation at the grade-level, and estimated structural parameters in the model by using the data on different levels of aggregation: model-level sales and grade-level price and attributes. Based on the estimates, this study assessed the policies to promote next generation cars in Japan.

Free Research Field

産業組織論

Academic Significance and Societal Importance of the Research Achievements

東日本大震災以降,原子力発電所の稼働を通じた温室効果ガスの削減が困難となっている中で,高い温室効果ガスの排出シェアを持つ自動車市場でその削減を進めることは喫緊の政策課題である.日本ではいわゆるエコカー減税や補助金などの環境優良車の普及促進政策が導入されており,その効果を定量的に把握することは欠かせないものの,政策評価を行うに当たって,常に理想的なデータが利用可能とは限らない.本研究で提示したデータの制約の下での需要関数の推定モデルは,理想的なデータが利用可能ではない状況での分析を可能とするものであり,近年注目を集める「エビデンスに基づく政策策定」の一助となることが期待される.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi