2017 Fiscal Year Research-status Report
Project/Area Number |
16K17560
|
Research Institution | Nagoya University |
Principal Investigator |
松本 雄也 名古屋大学, 多元数理科学研究科, 特任助教 (50773628)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Keywords | K3曲面 / 混標数 / 正標数 / 自己同型 / 群スキーム |
Outline of Annual Research Achievements |
標数p(p>0)の状況,または標数0から標数pへの退化を考える状況において,有限位数の自己同型射は位数がpで割れる場合に(位数がpで割れない場合と比べて)複雑な挙動を示すことが多い.K3曲面についても,標数0のK3曲面の位数pの自己同型射の誘導する標数p還元の自己同型射は,位数がpで割れない場合と異なる挙動を示すことが昨年度の研究で分かっていた. 今年度はまずこの現象をさらに精密に調べた.その結果,標数p側に誘導される自己同型射が非自明な場合と自明な場合とがあるが,後者の場合は自己同型射ではなく群スキームμ_pもしくはα_pの非自明な作用が誘導されるとみなせることが判明した. 標数pのK3曲面に対する群スキームμ_pおよびα_pの作用についてはほとんど先行研究が存在しないため,これらの作用について調べることにした.標数pでのμ_pの作用に関しては,(標数pでの位数pの自己同型射の場合と異なり,)標数0での位数pの自己同型射とほとんど同じ挙動をとるという,予想外の結果を得た.例えば,μ_pの作用が誘導する大域2次微分形式への作用が自明になることと,商がK3曲面に双有理同値になることが同値になり,これは標数0におけるNikulinの結果の類似である.論文は投稿に向けて準備中である. 標数pでのα_pの作用に関しては,μ_pとは対極的に,標数pでの位数pの自己同型射に近い挙動を示すことが分かった.論文は投稿に向けて準備中である. この他に,標数0のEnriques曲面の自己同型射のエントロピーとしてありうる値に関する条件を与え,論文(共著)を出版した.
|
Current Status of Research Progress |
Current Status of Research Progress
1: Research has progressed more than it was originally planned.
Reason
標数pのK3曲面に対する群スキームμ_pおよびα_pの作用という,予期していなかった対象を見出し,興味深い性質を見出すことができた.
|
Strategy for Future Research Activity |
群スキームμ_pやα_pの作用に関して今年度に得た結果を踏まえて,虚数乗法をもつK3曲面の正標数還元の性質への応用を探る.K3曲面以外の代数多様体への一般化もあわせて考察する.
|
Causes of Carryover |
研究打ち合わせや研究発表のために本補助金から旅費を支出する予定だったが,他の補助金や相手先から旅費の支給を受けた場合があった.
|