• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Combinatorial analysis of proper actions on pseudo-Riemannian symmetric spaces

Research Project

  • PDF
Project/Area Number 16K17594
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Geometry
Research InstitutionHiroshima University

Principal Investigator

Okuda Takayuki  広島大学, 理学研究科, 講師 (40725131)

Project Period (FY) 2016-04-01 – 2020-03-31
KeywordsLie 群 / 対称空間 / 不連続群 / 固有な作用
Outline of Final Research Achievements

In this research, we have studied proper actions and discontinuous groups for symmetric spaces. The most valuable result in this research is the following: we found deep relationships between the study of proper actions on pseudo-Riemannian symmetric spaces and that of conjugacy classes of totally geodesic submanifolds in non-compact Riemannian symmetric spaces. Totally submanifolds in symmetric spaces can be understood by Lie algebras and root systems (a kind of combinatorics objects) in some sense. In particular, we give a definition of ``Dynkin indices'' of totally geodesic submanifolds in symmetric spaces in terms of sectional curvatures and applied it to the study of proper actions on pseudo-Riemannian symmetric spaces.

Free Research Field

微分幾何学

Academic Significance and Societal Importance of the Research Achievements

本研究のテーマである対称空間上の固有な群作用, 不連続群は, 微分幾何学における主要な研究分野の一つである. 本研究の成果により, 特に擬リーマン対称空間上の不連続群という取扱いの難しい現象が, リーマン対称空間の全測地的部分多様体(``平面内の直線''や``空間内の平面''などの一般化)と呼ばれる基本的な対象の研究と深く関連することが分かった. これはこの研究分野における重要な知見であると思われる.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi