2019 Fiscal Year Final Research Report
Research on geometric symmetry and singularity of solutions for nonlinear wave equations
Project/Area Number |
16K17624
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Mathematical analysis
|
Research Institution | Shinshu University |
Principal Investigator |
Okamoto Mamoru 信州大学, 学術研究院工学系, 助教 (40735148)
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Keywords | 非線形波動方程式 |
Outline of Final Research Achievements |
We completely determine the range of Sobolev regularity of initial data to be well-posed of the Cauchy problem for the Dirac-Klein-Gordon system. We also show that the modified scattering for the solution to the Cauchy problem for the short-pulse, fifth order KdV-type, and higher order KdV-type equations. We study the Cauchy problem for the nonlinear Schrodinger equation with nonalgebraic nonlinearity in five and six dimensions. We prove that almost sure global well-posedness holds for the Cauchy problem in a larger class than the energy space for the energy-critical nonlinear Schrodinger equation.
|
Free Research Field |
関数方程式論
|
Academic Significance and Societal Importance of the Research Achievements |
非適切性の証明では,非線形項を逐次近似して,滑らかな解の存在を示し,それを用いて,ノルムインフレーションを証明した.また,波束テスト法を用いた解の漸近挙動の解明は,高階KdV型方程式にも適用できることを示した.さらに,初期値を確率化することで,決定論的な反例が除外されることを示した.本研究で培ったこれらの手法は,より広範な方程式に援用することができるものと考えられ,今後の研究がさらに発展する基盤になると期待している.
|