2022 Fiscal Year Annual Research Report
Dynamical analysis of elliptic overdetermined problems
Project/Area Number |
16K17628
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
小野寺 有紹 東京工業大学, 理学院, 准教授 (70614999)
|
Project Period (FY) |
2016-04-01 – 2023-03-31
|
Keywords | 過剰決定問題 / 自由境界問題 / 発展方程式 / 陰関数定理 |
Outline of Annual Research Achievements |
本研究課題はBernoulliの自由境界問題,Serrinの問題を含む一般の過剰決定問題に対する解(未知領域)の存在・一意性や,境界条件の摂動に対する領域形状の定量的安定性を導出する統一的解析手法の確立を目標とする.特に発展方程式的解析手法を主眼に置く本研究課題では,これらの方法論によって,従来特別な場合にのみ与えられていた楕円型・双曲型という解の分類を一般の過剰決定問題に拡張し,それらの経験的分類が発展方程式の観点からは非常に明快な理解を与えることを示した.すなわち,従来の単に最大値原理との相性の良さ・悪さという観点だけでなく,ある解が楕円型・双曲型であることは,その解の周辺から初期値を選ぶ場合に対応する発展方程式が放物型か逆放物型であることに対応することを明らかにした.
さらに,正則性損失構造から従来解析が困難だった地球物理学における数理モデルであるBackus問題に関して,その双極子解の摂動問題を考察し,軸対称性の仮定下ではソボレフ空間では正則性損失が起こらないことを発見し,詳細なスペクトル解析を行うことで,その摂動問題の可解性を初めて得ることに成功した.一方,ヘルダー空間では正則性損失が起こり得るが,非線型項の特別な形から,重み付きシャウダー評価によって不動点定理が適用できることを発見した.本研究成果については現在専門雑誌へ投稿中である.
以上の研究を遂行するにあたって,新型コロナウイルス感染症の影響で,当初予定していた研究訪問・打ち合わせ等が遅延したものの,オンライン討論等を活用し遂行することができた.
|
Research Products
(6 results)