• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Development of first-principles simulation method for excited-state correlated electron-nuclear dynamics in nano-structures

Research Project

  • PDF
Project/Area Number 16K17768
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Mathematical physics/Fundamental condensed matter physics
Research InstitutionTokyo University of Science

Principal Investigator

Suzuki Yasumitsu  東京理科大学, 理学部第一部物理学科, 講師 (50756301)

Project Period (FY) 2016-04-01 – 2019-03-31
Keywords時間依存密度汎関数理論 / 電子・原子核相関ダイナミクス / Exact Factorization理論 / 電子散乱 / 交換相関 / 多成分時間依存密度汎関数理論 / 電子・陽電子相関ダイナミクス / ボーム力学
Outline of Final Research Achievements

We developed Bohmian mechanics in the exact factorization of electron-nuclear wave functions and formulated the exact force acting on the nuclei in the correlated electron-nuclear dynamics. We revealed that multiple classical trajectories propagated by this exact force can reproduce the quantum nuclear motion in the strong field processes. We applied time-dependent density functional theory to the study of electron scattering processes in materials. We calculated the exact exchange-correlation (XC) potential in a model two-electron scattering system and revealed that the kinetic term in the XC potential plays an important role to describe the electron scattering processes. We developed time-dependent multicomponent density functional theory to study the coupled electron-positron dynamics. We applied the theory to the dynamics of a positronic lithium hydride molecule under a laser field and demonstrated the significance of the coupling between electronic and positronic motion.

Free Research Field

物質科学、物性理論

Academic Significance and Societal Importance of the Research Achievements

本研究において、電子・原子核相関系における原子核に働く厳密な力の表式が明らかになった。これにより、強レーザー場中の量子ダイナミクスをも古典的な運動方程式で記述しうることが明らかになり、励起状態電子・原子核相関ダイナミクスの第一原理計算手法開発に対して重要な知見を与えた。また、従来難問とされてきた電子散乱過程の第一原理計算を、時間依存密度汎関数理論(TDDFT)を用いて実行し、正確に電子散乱を記述するために必要な要素を明らかにした。また、物質に応用可能な電子・陽電子相関系の多成分TDDFTの開発に成功した。すなわち多成分相関系の励起状態ダイナミクスの第一原理計算手法を世界に先駆けて開発した。

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi