2018 Fiscal Year Final Research Report
Investigation of Arctic mixed-phase stratus clouds with a habit-prediction scheme
Project/Area Number |
16K17803
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Meteorology/Physical oceanography/Hydrology
|
Research Institution | Kochi University of Technology (2018) Kyushu University (2016-2017) |
Principal Investigator |
Hashino Tempei 高知工科大学, 環境理工学群, 准教授 (10766520)
|
Research Collaborator |
OKAMOTO hajime
KOIKE makoto
Gijs de Boer
Greg Tripoli
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | 北極 / 混合相層雲 / 雲物理 / 数値実験 |
Outline of Final Research Achievements |
Clouds modulate the surface energy budget through shortwave and longwave radiation. In Arctic, low-level clouds with liquid particles prevail even at temperature less than 0 degree, and these are important for climate prediction. In this research, we evaluated a habit-prediction model that simulates ice crystal shapes (habit), and investigated relationships between habit and ice nucleation process. Comparison of the simulation against cloud radar observation indicated its effectiveness and the predicted habit was qualitatively similar to the observation. As for hexagonal plates crystals, the size of droplets freezing relates to the axis ratio of crystals after vapor depositional growth. Also, large droplets that are not yet activated play an important role in the freezing process.
|
Free Research Field |
気象学、雲物理学
|
Academic Significance and Societal Importance of the Research Achievements |
北極の混合層層雲において、氷粒子の発生メカニズムは未解明であり、気象や気候モデルで再現が困難であるため、現在もリモートセンシング観測や現地調査により、活発に研究されている。本研究では、最新の知見を組み込んだ数値モデルを用いて、水滴の凍結現象と氷晶の形状に関係があることを示した。リモートセンシングから氷晶の形成過程を推測できる可能性がある。大きい水滴の重要性を示し、大きいエアロゾル粒子の観測の重要性を示した。また、晶癖予測モデルによる再現実験を他のモデル開発の際に参照することができる。
|