2017 Fiscal Year Research-status Report
時間的・空間的に相互作用をもつ格子確率モデルの極限定理の研究
Project/Area Number |
16K21039
|
Research Institution | Yokohama National University |
Principal Investigator |
竹居 正登 横浜国立大学, 大学院工学研究院, 准教授 (60460789)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Keywords | パーコレーション / ランダムウォーク / セルオートマトン |
Outline of Annual Research Achievements |
研究計画に従って空間的・時間的に相互作用をもつ確率モデルの研究を進め,本年度次のような成果が得られた. (1) 空間的に相互作用のある確率モデルとして,2次元Isingモデルの高温相におけるパーコレーション問題を引き続き研究した.Aizenman (1997)により提案されたspanning clusterの図形的性質を研究し,その大きさがKestenのIICの場合と同じオーダーになることを示す極限定理を証明した. (2) 時間的に相互作用のある確率モデルとして,記憶をもつランダムウォークの種々のモデルについて解析を進めた.強化ランダムウォークについては木グラフの場合に詳しい極限定理を得ることを目標に研究を進めている.また,Elephant Random Walkについては,記憶のパラメターが大きい場合の極限挙動をより具体的に記述する極限定理が得られつつある. (3) 極限定理の精密化の計画については,空間的に相互作用のある場合予想を超える困難があることが分かり,相互作用のないパーコレーション問題に立ち戻って考察することとした.Y.C. Zhang (1999)は2次元正方格子の正方形領域における一番低い横断路の通る頂点の最大高さについて調べた.優臨界的な場合の結果は改良の余地を残していたが,この場合の正しいオーダーを求めることができた.この量については2次元Isingモデルの高温相におけるパーコレーション問題をはじめ相互作用のある場合にも拡張できる見通しがたっている. なお,パーコレーションと関連する副次的テーマとして考察を進めてきたセルオートマトンに関しては,パスカルの三角形における剰余と関係する1次元線形セルオートマトンに対する極限分布の存在に関して得られていた結果をさらに精密化し,今年度論文として発表することができた.
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
パーコレーションの問題における極限定理の精密化の研究では当初の予想を超えて種々の困難が生じており,研究の進捗が計画よりもやや遅れている.基本に立ち返って,独立なパーコレーションの場合の極限定理について再度考察し,どのような量に関して極限定理が精密化・一般化できるかを精査しているところである, 時間的な相互作用をもつ確率過程の研究では,強化ランダムウォークのほかElephant Random Walkにも視野を広げ,記憶のあるランダムウォークの解析で基本的な役割を果たす手法を見直している. 副次的テーマであるセルオートマトンについては得られた結果を今年度論文として公表し,その他のモデルについて得られた成果の一部を口頭発表したが,成果を論文としてとりまとめる作業がやや遅れている. 次年度の研究につながる考察と,関連する課題についていくつかの成果が得られてはいるが,総合的に判断して,研究計画に比べ「やや遅れている」と考えている.
|
Strategy for Future Research Activity |
独立なパーコレーション及び2次元Isingモデルのパーコレーションにおける極限定理について,本年度の積み上げをさらに推し進め新たな成果を得ることを目指す.強化型ランダムウォークに関しては木グラフ上のモデルに焦点をしぼり,関数型中心極限定理の証明を完成させることを目標とする. これらの研究を推進するために,最新の数学専門図書を購入し情報を収集する必要がある.また,パーコレーションや記憶のあるランダムウォークについて活発に研究している国内外の研究者を訪問・招聘して意見交換を行なう.得られた成果を研究集会において発表し,参加者と討論することでさらなる深化を目指す.
|
Causes of Carryover |
(理由) 2018年3月までに発行予定で購入を計画していた数学専門図書が未刊行であるため. (使用計画) 購入を計画している数学専門図書が刊行され次第速やかに購入し速やかに研究計画遂行に役立てる.次年度中に刊行されない場合は研究計画遂行に有用と考えられる別の図書の購入に充当する.
|