• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Research-status Report

生命現象における階層を超えるミクロとマクロとをつなぐ理論の構築

Research Project

Project/Area Number 16KT0135
Research InstitutionUniversity of Miyazaki

Principal Investigator

出原 浩史  宮崎大学, 工学部, 准教授 (50515096)

Project Period (FY) 2016-07-19 – 2019-03-31
Keywordsパターン形成 / 数理モデル / ミクロとマクロ / 応用数学
Outline of Annual Research Achievements

自然界に見られる多くの現象は、階層構造を有している。生命現象においては、細胞が集まり組織や器官となり、それらの集合が個体を形成する。古くから複雑な物事でも、それを構成する要素に分解し個別の要素を理解すれば、全体の性質や振る舞いを理解できると思われていたが、ミクロの情報から、予想できない振る舞いがマクロに現れることが認識されるようになり、その理解には、異なる階層をつなぐ新たな手法の確立が必要となっている。
本研究課題で着目しているバクテリアである大腸菌の運動は直進運動と方向転換を交互に繰り返すという単純な運動形態であるが、これらを養分が含まれている寒天培地上で培養するとマクロでは非常に規則正しいコロニーパターンを形成することが知られている。個々の大腸菌がどう行動すべきかを命じている司令塔のような制御機構は存在しないにもかかわらず、自己組織的にコロニーパターンの創発をもたらしていることから大きな注目を集めてきた。
これまでこのような規則正しい大腸菌のコロニーパターンの形成メカニズムを解明しようと様々な研究者によって様々な数理モデルが提唱されてきた。本年度は、最も単純なバクテリアの集合現象を記述するケラー・シーゲルモデルに着目し、それに対応する反応拡散系を導出した。これまでは交差拡散と呼ばれる方程式に対して反応拡散系による近似がなされてきたが、これによっって、走化性のような移流項をもつ方程式に対しても反応拡散系によって近似できることを示唆した。さらにはこれによってミクロモデルの導出が可能になると考えられる。そのため、大腸菌1個体のようなミクロな振る舞いからと大腸菌群が作り出すマクロなコロニーパターンとの関係性解明に大きく近づくものと思われる。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

移流項を持つような方程式に対して、それを反応拡散系で近似できたことが一つの大きな収穫である。それによってミクロな振る舞いを記述するミクロモデルを構築できる可能性がある。さらにはその近似によって移流項を持つような方程式に対して、別の視点から解の性質が分かる可能性が出てきたので研究が進展すると思われる。

Strategy for Future Research Activity

今年度の知見に基づき、次年度はマクロモデルからミクロモデルを導出することが目標となる。そのミクロな振る舞いからマクロなパターンがどのようにして生成されるのかということを解明する予定である。ミクロモデルを計算機でシミュレーションすることによって再現されるパターンやその形成過程の性質とマクロモデルでのパターンや形成過程とを比較し、整合性を評価することを予定している。

Causes of Carryover

出張を控えたため、繰越が生じた。研究推進のための研究議論として海外や国内への旅費として利用する予定である。

  • Research Products

    (16 results)

All 2018 2017 Other

All Int'l Joint Research (3 results) Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results) Presentation (10 results) (of which Int'l Joint Research: 2 results,  Invited: 9 results)

  • [Int'l Joint Research] パリ南大学/モンペリエ大学(フランス)

    • Country Name
      FRANCE
    • Counterpart Institution
      パリ南大学/モンペリエ大学
  • [Int'l Joint Research] モンペリエ大学(イタリア)

    • Country Name
      ITALY
    • Counterpart Institution
      モンペリエ大学
  • [Int'l Joint Research] リムリック大学(アイルランド)

    • Country Name
      IRELAND
    • Counterpart Institution
      リムリック大学
  • [Journal Article] Bifurcation structure of stationary solutions for a chemotaxis system with bistable growth2018

    • Author(s)
      Izuhara Hirofumi、Kuto Kousuke、Tsujikawa Tohru
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: 35 Pages: 441~475

    • DOI

      10.1007/s13160-017-0298-0

    • Peer Reviewed
  • [Journal Article] On a nonlocal system for vegetation in drylands2018

    • Author(s)
      Alfaro Matthieu、Izuhara Hirofumi、Mimura Masayasu
    • Journal Title

      Journal of Mathematical Biology

      Volume: 77 Pages: 1761~1793

    • DOI

      10.1007/s00285-018-1215-0

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Traveling Waves in a Reaction-Diffusion System Describing Smoldering Combustion2017

    • Author(s)
      Ijioma Ekeoma Rowland、Izuhara Hirofumi、Mimura Masayasu
    • Journal Title

      SIAM Journal on Applied Mathematics

      Volume: 77 Pages: 614~637

    • DOI

      10.1137/16M1089915

    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 燃焼モデルの数値シミュレーション解析2018

    • Author(s)
      出原浩史
    • Organizer
      数学と現象 in 清里
    • Invited
  • [Presentation] Mathematical analysis on a nonlinear system for contact inhibition of cell growth2017

    • Author(s)
      Hirofumi Izuhara
    • Organizer
      MIMS workshop on Modeling and Numerical Analysis of Nonlinear Phenomena: Fluid Dynamics, Motion of Interfaces, and Cell Biology
    • Int'l Joint Research / Invited
  • [Presentation] Smoldering combustion in a narrow channel2017

    • Author(s)
      Hirofumi Izuhara
    • Organizer
      ReaDiNet 2017 International Conference on Mathematical Biology
    • Int'l Joint Research / Invited
  • [Presentation] 増殖項をもつ走化性方程式のパターン形成2017

    • Author(s)
      出原浩史
    • Organizer
      京都大学数理解析研究所共同研究(公開型) 非線形現象と反応拡散方程式
    • Invited
  • [Presentation] くすぶり燃焼の数理モデルからの接近2017

    • Author(s)
      出原浩史
    • Organizer
      明治大学MIMS研究集会 火災における不安定性の数理
    • Invited
  • [Presentation] 半乾燥地域に現れる植生パターンと砂漠化2017

    • Author(s)
      出原浩史
    • Organizer
      明治大学MIMS研究集会 自然界に現れる紋様, 形態の統合的理解
    • Invited
  • [Presentation] 反応拡散系における周期解について2017

    • Author(s)
      出原浩史
    • Organizer
      数学と現象 in 奥多摩
    • Invited
  • [Presentation] 接触抑制と正常細胞と異常細胞のダイナミクス2017

    • Author(s)
      出原浩史
    • Organizer
      北海道大学社会創造数学セミナーシリーズHMMCセミナー
    • Invited
  • [Presentation] 走化性と増殖の効果がつくりだす時空間パターン2017

    • Author(s)
      出原浩史
    • Organizer
      明治大学MIMS研究集会 時空間ダイナミクス~生命現象における時間変化を伴う空間秩序
    • Invited
  • [Presentation] Narrow channelにおけるくすぶり燃焼と再燃2017

    • Author(s)
      出原浩史
    • Organizer
      日本応用数理学会2017年度年会

URL: 

Published: 2018-12-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi