• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2007 Fiscal Year Final Research Report Summary

Geometric structures and submanifolds

Research Project

Project/Area Number 17540078
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionShimane University

Principal Investigator

KIMURA Makoto  Shimane University, Fac. of Sci. and Tech, Professor (30186332)

Co-Investigator(Kenkyū-buntansha) FURUMOCHI Tetsuo  Shimane Univ., Fac. of Sci. and Tech, Professor (40039128)
HATTORI Yasunao  Shimane Univ., Fac. of Sci. and Tech, Professor (20144553)
YOKOI Katsuya  Shimane Univ., Fac. of Sci. and Tech, Professor (90240184)
MAEDA Sadahiro  Saga Uni., Fac. of Sci. and Tech, Professor (40181581)
Project Period (FY) 2005 – 2007
KeywordsDifferential Geometry / Lagrange submanifolds / Minimal submanifolds
Research Abstract

As a joint research with Kaoru Suizu, we obtained fundamental theorem for Lagrange surfaces in the Riemann product of round 2-spheres. Namely, we showed that for minimal Lagrange surfaces in $S^2\times S^2$, Gauss and Codazzi equations are sufficient and necessary condition far the existence of such minimal Lagrange immersions. Also for Lagrange surfaces in $S^2\times S^2$, second fundamental tensor and the angle function, which we introcuced are invariant for congruent.
Next we investigated Lagrange submanifolds in complex projective spaces , which is obtained as a 1-parameter family of totally geodesic, totally real (n-1)-dimensional submanifolds $RP^<{n-1}>$. Such submanifolds axe obtained from curves in the moduli space op $RP^<{n-1}>$ in $CP^n$. For a curve in the moduli space, we showed that the corresponding $n$-dimensional submanifold is Lagrangian if only if the curve is horizon with respect to the natural fibration from the moduli space to $CP^n$. Then we showed that if such a Lagrange submanifold is minimal, then is total geode-sic. More we investigated the condition for which such Lagrange submanifolds to be Hamiltonian minimal.

  • Research Products

    (9 results)

All 2008 2007 Other

All Journal Article (6 results) (of which Peer Reviewed: 3 results) Presentation (2 results) Remarks (1 results)

  • [Journal Article] Pseudoho holomorphic sectional curvatures of real hypersurfaces in a complex space form2008

    • Author(s)
      J. T. Cho and M. Kimura
    • Journal Title

      Kyushu J. Math. 62

      Pages: 75-87

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Lagrangian submanifolds with codimension 1 totally geodesic foliation in complex projective spaces,2008

    • Author(s)
      M. Kimura
    • Journal Title

      Kodai Math. J. 31

      Pages: 38-45

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Pseudo holomorphic sectional curvatures of real hypersurfaces in a complex space forms2008

    • Author(s)
      Jong, Taek, Cho, Makoto, Kimura
    • Journal Title

      Kyushu J. Math 62

      Pages: 75-87

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Lagrangian submanifolds with codimension 1 totally geodesic foliation in complex projective spaces2008

    • Author(s)
      Makoto, Kimura
    • Journal Title

      Kodai Math. J 31

      Pages: 38-45

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Fundamental Theorems of Lagrangian surfaces in $S^2\times S^2$2007

    • Author(s)
      M. Kimura and K. Suizu
    • Journal Title

      Osaka Math. J. 44

      Pages: 829-850

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Fundamental theorems of Lagrangian surfaces in SS^2\times S^2$2007

    • Author(s)
      Makoto, Kimura, Kaoru, Suizu
    • Journal Title

      Osaka J. Math 44

      Pages: 829-850

    • Description
      「研究成果報告書概要(欧文)」より
  • [Presentation] Lagrangian submanifolds with totally geodesic foliation in CP^n2007

    • Author(s)
      木村真琴
    • Organizer
      北大幾何学コロキウム
    • Place of Presentation
      北海道大学
    • Year and Date
      2007-11-09
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] Lagrangian submanifolds with totally geodesic foliation in complex projective spaces2007

    • Author(s)
      Makoto,Kimura
    • Organizer
      Hokudai Geometry Colloquim
    • Place of Presentation
      Hokkaido Univ
    • Year and Date
      2007-11-09
    • Description
      「研究成果報告書概要(欧文)」より
  • [Remarks] 「研究成果報告書概要(和文)」より

    • URL

      http://susc3002.riko.shimane-u.ac.jp/

URL: 

Published: 2010-02-04  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi