• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Final Research Report Summary

Special linear systems on Riemann surfaces

Research Project

Project/Area Number 17540160
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionYamaguchi University

Principal Investigator

KATO Takao  Yamaguchi University, Graduate School of Science and Engineering, Professor, 大学院理工学研究科, 教授 (10016157)

Co-Investigator(Kenkyū-buntansha) MASUMOTO Makoto  Yamaguchi University, Graduate School of Science and Engineering, Professor, 大学院理工学研究科, 教授 (50173761)
KURIYAMA Ken  Yamaguchi University, Graduate School of Science and Engineering, Professor, 大学院理工学研究科, 教授 (10116717)
YANAGIHARA Hiroshi  Yamaguchi University, Graduate School of Science and Engineering, Associate Professor, 大学院理工学研究科, 助教授 (30200538)
HOMMA Masaaki  Kanagawa University, Faculty of Engineering, Professor, 工学部, 教授 (80145523)
OBUCHI Akira  Tokushima University, Faculty of Integrated Arts and Sciences, Professor, 総合科学部, 教授 (10211111)
Project Period (FY) 2005 – 2006
Keywordscompact Riemann surfaces / algebraic curves / meromorphic functions / linear systems / gonality / error-correcting coding theory
Research Abstract

We study classification problems for compact Riemann surfaces through the existence of meromorphic functions on them and conformal invarinats.
1. Let C be a compact Riemann surface of genus g. The minimal degree of pencils on is said to be the gonality of C and denoted by gon(C). This quantity is a conformal invarinat. It is well-known that 2 【less than or equal】 gon(C) 【less than or equal】 [(g + 3)/2]. On the other hand, let s_2(C) be the minimal degree of simple nets on C. While s_2(C) satisfies (3 + √<8g+1>)/2 【less than or equal】s_2(C) 【less than or equal】 g + 2, these two quantities relate strongly. As a matter of fact, If gon(C) = 2, then s_2(C) = g + 2 and vice versa. Furthermore, in case g 【greater than or equal】 6, that C is elliptic-hyperelliptic if and only if s_2(C) = g + 1. In this project, we show that for almost all g, there is no C such that s_2(C) = g. Moreover, in the case where C is 4-gonal of genus 9 with the scrollar invariant (4,1,1), we decided s_2(C). This case seems to be the most complicated case among 4-gonal cases.
2. Let F_q be a finite fields with q elements and C ⊂F^n_q be a linear [n,k,d]q code. Let n_q(k,d) be the minimum of the code lengths for fixed k, d. There is an upper bound of n_q(k,d) known as the Griesmer bound. In this project, we show that for some range of d's, n_q(k,d) (for k = 5,6) is equal to the Griesmer bound minus 1.
As a generalization of the notion of the Weierstrass point, one can define the notion of Weierstrass n-tuple by choosing appropriate n points. Using the pure gaps of Weierstrass n-tuple, we obtained an estimate of the minimal distance of the Goppa codes.

  • Research Products

    (12 results)

All 2006 2005

All Journal Article (12 results)

  • [Journal Article] The complete determination of the minimum distance of two-point codes on a Hermitian curve2006

    • Author(s)
      Homma, M., Kim, S.
    • Journal Title

      Des. Codes Cryptogr. 40

      Pages: 5-24

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The two-point codes with the designed distance on a Hermitian curve in even characteristic2006

    • Author(s)
      Homma, M., Kim, S.
    • Journal Title

      Des. Codes Cryptogr. 39

      Pages: 375-386

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Regions of variability for convex functions2006

    • Author(s)
      Yanagihara H.
    • Journal Title

      Math. Nachr. 279

      Pages: 1723-1730

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] The complete determination of the minimum distance of two-point codes on a Hermitian curve2006

    • Author(s)
      Homma, M., Kim, S.
    • Journal Title

      Des.Codes Cryptogr. 40

      Pages: 5-24

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] The two-point codes with the designed distance on a Hermitian curve in even characteristic2006

    • Author(s)
      Homma, M., Kim, S.
    • Journal Title

      Des.Codes Cryptogr. 39

      Pages: 375-386

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Regions of variability for convex functions2006

    • Author(s)
      Yanagihara H.
    • Journal Title

      Math.Nachr. 279

      Pages: 1723-1730

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Nonexistence of projective codes of dimension 5 which attain the Griesmer bound for q^4 - 2q^2 - 2q +1 < d< q^4 - 2q^2 - q2005

    • Author(s)
      Cheon, E., Kato, T., Kim, S
    • Journal Title

      Des. Codes Cryptogr. 36

      Pages: 289-299

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] On the minimum length of some linear codes of dimension 52005

    • Author(s)
      Cheon, E., Kato, T., Kim, S
    • Journal Title

      Des. Codes Cryptogr. 37

      Pages: 421-434

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Circularizable domains on Riemann surfaces2005

    • Author(s)
      Masumoto, M., Shiba, M.
    • Journal Title

      Kodai Math. J. 28

      Pages: 280-291

    • Description
      「研究成果報告書概要(和文)」より
  • [Journal Article] Nonexistence of projective codes of dimension 5 which attain the Griesmer bound for q^4-2q^2-2q+1【less than or equal】d【less than or equal】q^4-2q^2-q2005

    • Author(s)
      Cheon, E., Kato, T., Kim, S
    • Journal Title

      Des.Codes Cryptogr. 36

      Pages: 289-299

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] On the minimum length of some linear codes of dimension 52005

    • Author(s)
      Cheon, E., Kato, T., Kim, S
    • Journal Title

      Des.Codes Cryptogr. 37

      Pages: 421-434

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Circularizable domains on Riemann surfaces2005

    • Author(s)
      Masumoto, M., Shiba, M.
    • Journal Title

      Kodai Math.J. 28

      Pages: 280-291

    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2008-05-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi