2006 Fiscal Year Final Research Report Summary
Activation and motility of human neutrophils by cytokines : role of intracellular signals.
Project/Area Number |
17591179
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Dermatology
|
Research Institution | OSAKA CITY UNIVERSITY |
Principal Investigator |
KATSUNA Haruo Osaka City University, Graduate School of Medicine, Research Associate, 大学院医学研究科, 助手 (00332958)
|
Project Period (FY) |
2005 – 2006
|
Keywords | neutrophil / GM-CSF / TNF / motility / ERK / p38 / PI3K |
Research Abstract |
The effect of granulocyte colony-stimulating factor (G-CSF) on human neutrophil motility was studied using videomicroscopy. Stimulation of neutrophils with G-CSF resulted in enhanced motility with morphological change and increased adherence. Enhanced neutrophil motility was detected within 3-5 min after G-CSF stimulation, reached a maximum at 10 min, and was sustained for approximately 35 min. The maximum migration rate was 84.4 +/- 2.9 microm/5 min. A study using the Boyden chamber method revealed that G-CSF-stimulated neutrophils exhibited random migration but not chemotaxis. Enhanced neutrophil motility and morphological change were inhibited by MEK [mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase] inhibitors (PD98059 and U0126), and a phosphatidylinositol 3-kinase (PI3K) inhibitor (wortmannin), but not by a p38 MAPK inhibitor (SB203580). These findings are consistent with the fact that G-CSF selectively activates MEK/ERK and PI3K, but not p38, in neutrophils. MEK/ERK activation was associated with G-CSF-induced redistribution of F-actin and phosphorylated myosin light chain. Enhanced neutrophil motility was observed even in the presence of neutralizing anti-CD18 antibody, which prevented cell adherence. These findings indicate that G-CSF induces human neutrophil migration via activation of MEK/ERK and PI3K.
|
Research Products
(4 results)