• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Annual Research Report

Algebraic aspects of elliptic multiple zeta values

Research Project

Project/Area Number 17F17020
Research InstitutionKyushu University

Principal Investigator

金子 昌信  九州大学, 数理学研究院, 教授 (70202017)

Co-Investigator(Kenkyū-buntansha) MATTHES NILS  九州大学, 数理(科)学研究科(研究院), 外国人特別研究員
Project Period (FY) 2017-10-13 – 2020-03-31
Keywords楕円多重ゼータ値 / Fay identity / Kronecker関数
Outline of Annual Research Achievements

特別研究員Nils Matthes氏はその学位論文において,楕円二重ゼータ値のなす空間の次元を完全に決定しているが,そこにおいて彼は Fay シャッフル関係式(Fay identity)という関係を独自に発見,証明し,さらに,本質的にこの関係式がすべての線型関係を与えることを証明した.その上,次元の上限だけでなく,独立性も証明することによって,次元を決定した.この仕事の意義は単に次元を決定しただけに留まらず,楕円多重ゼータ値が,従来の多重ゼータ値理論において不思議に現れていたモジュラー形式との関係を,概念的理論的に説明出来る可能性をはっきり示したことにある. Matthes氏はここに現れている Fay identity の役割を深く考察し,Kronecker関数という,古典的なテータ関数から構成される重要な関数が,本質的には Fay identityで一意的に特徴付けられることを示した.モジュラー形式の周期は,周期多項式というもので理解されるが,これは Gangl-Kaneko-Zagierの仕事により,二重ゼータ値と深い関係があることが示され,その関係を真に理解することが当分野での最重要問題と言ってもよいような対象である.そして楕円多重ゼータ値を研究する大きな動機の一つとして,このモジュラー形式との関係を真に理解することがある.Matthes氏の Kronecker関数の Fay identityによる特徴付けの議論は,関数等式から導かれる,冪級数の係数が満たす非線型漸化式を解くという,ある意味自然なもので,多少の工夫は必要になるものの,込み入った議論を必要としないものである.氏はその優れた洞察力から,Fay identityの持つ意味を明らかにした.非常にエレガントな仕事であり,楕円多重ゼータ値とKronecker 関数を結びつける大変重要な仕事である.

Research Progress Status

翌年度、交付申請を辞退するため、記入しない。

Strategy for Future Research Activity

翌年度、交付申請を辞退するため、記入しない。

  • Research Products

    (8 results)

All 2019 2018 Other

All Int'l Joint Research (1 results) Journal Article (3 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 3 results,  Open Access: 3 results) Presentation (4 results) (of which Int'l Joint Research: 1 results,  Invited: 4 results)

  • [Int'l Joint Research] Max Planck Institute for Mathematics(ドイツ)

    • Country Name
      GERMANY
    • Counterpart Institution
      Max Planck Institute for Mathematics
  • [Journal Article] On Ecalle's and Brown's Polar Solutions to the Double Shuffle Equations Modulo Products2019

    • Author(s)
      Nils Matthes and Koji Tasaka
    • Journal Title

      Kyushu Journal of Mathematics

      Volume: 印刷中 Pages: 印刷中

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] The meta-abelian elliptic KZB associator and periods of Eisenstein series2018

    • Author(s)
      Nils Matthes
    • Journal Title

      Selecta Math. (N.S.)

      Volume: 24(4) Pages: 3217--3239

    • Peer Reviewed / Open Access
  • [Journal Article] Twisted elliptic multiple zeta values and non-planar one-loop open-string amplitudes2018

    • Author(s)
      Broedel Johannes、Matthes Nils、Richter Gregor、Schlotterer Oliver
    • Journal Title

      Journal of Physics A: Mathematical and Theoretical

      Volume: 51 Pages: 285401~285401

    • DOI

      10.1088/1751-8121/aac601

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Configuration spaces of Riemann surfaces and open string amplitudes2018

    • Author(s)
      Nils Matthes
    • Organizer
      Elliptic integrals Mathematics and Physics
    • Int'l Joint Research / Invited
  • [Presentation] An algebraic characterization of the Kronecker function2018

    • Author(s)
      Nils Matthes
    • Organizer
      Mini-workshop: Elliptic multiple zeta values and mixed elliptic motives:
    • Invited
  • [Presentation] An algebraic characterization of the Kronecker function2018

    • Author(s)
      Nils Matthes
    • Organizer
      Mathematics seminar
    • Invited
  • [Presentation] An algebraic characterization of the Kronecker function2018

    • Author(s)
      Nils Matthes
    • Organizer
      数学講演会
    • Invited

URL: 

Published: 2019-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi